Swarm Intelligence – W10: Applications of Threshold-Based Algorithms and Introduction to Sensor Networks
Outline

• Applications of Threshold-Based Algorithms
 – Computational examples
 – Embedded systems examples
• Introduction to Wireless Sensor Networks
 – Overview
 – Motivating applications
 – Taxonomy
 – Challenges
 – WSN and SI
An Example of the Application of a Variable Threshold Model to a Problem of Adaptive Task Allocation
Application to a Problem of Adaptive Task Allocation

The case of an express mail company

- Simulations are carried out on a grid with 5x5 zones
- 4 neighboring zones (no differentiation) are taken into account in the calculations; the boundary conditions are periodic (wrap around)
- 5 agents

- Different task = different zone -> demand specific to each of the zones! Each agent has 5x5=25 different thresholds!
- Share some similarities with your lab problem
Application to a Problem of Adaptive Task Allocation

Simulation details

• At each iteration, the demand is increased by 50 units in each of 5 randomly selected zones.

• The agents are consulted in random order, and each agent \(i \) computes its probability \(T_{i,j} \) of responding to the demand coming from each zone \(j \). Response is reactive (based on a stimulus and a threshold function) but probabilistic in this case.

• If no agent has responded within 5 consultations, the next iteration begins.

• When an agent responds to a demand, it will be unavailable for a time proportional to the distance between its current position and the zone to which it is moving.

• When an agent moves to a zone, the demand associated with that zone remains at 0 while it is there.
Application to a Problem of Adaptive Task Allocation

Updating the agents’ response thresholds

Each time an agent decides to search for a letter in a zone j:

- $\theta_{i,j} \rightarrow \theta_{i,j} - \xi_0$
- $\theta_{i,n(j)} \rightarrow \theta_{i,n(j)} - \xi_1$
- $\theta_{i,k} \rightarrow \theta_{i,k} + \phi$, for $k \neq j$, $k \not\in \{n(j)\}$

- θ_{ij}: response threshold of agent i to a demand coming from zone j
- $\theta_{i,n(j)}$: response threshold of agent i to a demand coming from zones adjacent to zone j
- $\{n(j)\}$: the set of zones adjacent to j
- ξ_0: learning coefficient associated with zone j
- ξ_1: learning coefficient associated with zones adjacent to j
- ϕ: forgetting coefficient associated with other zones
Application to a Problem of Adaptive Task Allocation

The threshold function

\[T_{ij}(s_j) = \frac{s_j^2}{s_j^2 + \alpha \theta_{ij}^2 + \beta d_{z(i),j}^2} \]

\(T_{ij} : \) probability that an individual \(i \), located in zone \(z(i) \) will respond to a demand \(s_j \) in zone \(j \)

\(\theta_i \in [\theta_{\text{min}}, \theta_{\text{max}}] : \) response threshold of agent \(i \) to a demand coming from zone \(j \)

\(d_{z(i),j} : \) distance between \(z(i) \) and \(j \)

\(\alpha \geq 0, \beta \geq 0 : \) modulation parameters

Ex.1 \(\beta = 0 \) → standard threshold function; the higher threshold the higher needs to be the stimulus in order to respond (e.g. interest/laziness of the dispatcher for a given zone)

Ex.2 \(\alpha = 0 \) → response based only on the distance cost between demand in zone \(j \) and current zone \(z(i) \)
Evolution du seuil de réponse d'un individu par rapport à la zone i

\[\alpha=0.5, \beta=500, \theta_{\min}=1, \theta_{\max}=1000, \xi_0=150, \xi_1=70, \varphi=10 \]
Division of Labor in Robotic Systems Using Threshold-Based Algorithms: Examples with one Task and One or Multiple Castes
The First Attempt to Transport a Threshold-Based Macroscopic Model to a Multi-Unit Embedded System (Krieger and Billeter, 2000)

• 1 task: foraging (and maintaining nest reserves)

• Multiple castes (# of castes = # of robots): each of the robots is endowed with a different threshold

• Robot states: either active (foraging) or idle in the nest

• Foraging demand associated with a central stimulus: maintaining a virtual nest energy above a given level

• Foraging stimulus perceivable only in the nest; deterministic robot response

• Solution without com compared with primitive com (tandem recruitment)
Krieger and Billeter (2000)
Krieger and Billeter (2000)

3. Look for food-items
4. Load food-item
5. Evaluate site
6. Return to nest
7. Unload food-item
1. Wait in nest
2. Leave nest

Tandem recruitment

Fig. 5. Mission cycle.
Krieger and Billeter (2000)

Theoretical contribution
- No systematic simulations, no modeling: isolated experiment.
- No systematic study on threshold distribution and noise influence on response.

Autonomous robotics contribution
+ Fixed threshold algorithm verified in a real robot experiment
+ Experimental sound results (10 runs per experiment, up to 12 robots, stat tests)
- High investment in manpower (2.5 man/year) and hardware
- No effort in exploiting the system noise in order to reduce individual complexity; adapting macro-to-micro mechanisms to artificial platform
- No effort to overcome unbalanced workload

Social insect contribution (robots as a model for insects)
- The experiment does not add any additional information to a simple macroscopic model since no effort on clarifying potential microscopic mechanisms
- No quantitative link between artificial (robots) and natural (ants) system
Threshold-Based Control of Aggregation Activity (Agassounon and Martinoli, 2001)

Special type of aggregation: linear structure building
(more on week 13)
Controller without Threshold-Based Activity Regulation

Robot controller (FSM)

Note: obstacle avoidance/interference states in loaded and free conditions have to be separated for modeling purposes otherwise one of such maneuvers could induce a seed dropping/picking operation; at the real robot controller level the routine might be the same + load flag.
Performance without Threshold-Based Activity Regulation

Possible metric: average cluster size (20 seeds)

Saturation phase: all seeds in a single cluster or in the robots’ grippers
Distributed Activity Regulation of Aggregation?

• Q: can we regulate the robot system activity in a fully distributed way so that robots the number of individuals active during the aggregation process is matched with aggregation demand?

• A: yes, using a threshold-based algorithm!

• Key motivations:
 – **Evolution of manipulation sites**: at the beginning there are several manipulation sites, work in parallel positive; the more the aggregation/building process progresses the less manipulation sites there are, the more competition (interference) for the same manipulation sites there is.
 – **End criterion**: a power-efficient building system should stop working when the task is accomplished
 – **Increasing the final cluster size**: at the end all the seeds should belong to the single cluster (only those on the ground count for the aggregation metrics)
 – **Designing a truly distributed threshold-based algorithm** (no supervisor!)
Implementation of the Threshold-Based Algorithm

- **1 task**: aggregation → 1 threshold per robot
- **How many different thresholds, threshold distribution?**
- **Ideas** (minimizing complexity, maximizing robustness/interchangeability):
 - Robots have the same capabilities, no reason to have different thresholds
 - Probabilistic response even with a single threshold will suffice to regulate the activity; not all the robots stop at the same time, when one drop the work, direct influence on aggregation demand
 - How do we implement: deterministic response + noise = probabilistic response → exploit local perception based on on-board sensors as noise generator!
- **Chosen stimulus**: time needed to find a seed to manipulate; the larger the time, the lower the stimulus associated with the aggregation demand
- **Special case of demand evolution**: it does not increase automatically but stay constant if nothing is done. Initial condition: \(s(0) = S_0 \) and \(\delta = 0 \) (instead of \(s(0) = 0 \) \(\delta > 0 \) as in the previous examples) → switching mechanism asymmetric: active → idle possible; idle → active not possible.
- **Algorithm extensible with a random wake up time/…**: customized to aggregation demand without major seed reinsertion
Performance with Threshold-Based Activity Regulation

20 seeds, threshold for abandoning the arena = 25 min, 1-5 robots

Average cluster size

Number of active robots
Performance with Threshold-Based Activity Regulation

20 seeds, threshold for abandoning the arena = 25 min, 10 robots

No more saturation: growing phase beyond 10-seeds single cluster

Average cluster size

Number of active robots
How good does this work?

Advantages
- easy to determine, unique threshold for the all team;
- robot homogenous (also controller): on average good load distribution
- optimal value determined as a function of the system feature (number of robots/speed/number of seeds/arena surface etc.) → quantitative models (micro and macro) can help to find the optimal threshold

Drawbacks
- fixed unique threshold = single parameter encoding the whole dynamics of the experiment → algorithm extremely robust but system operation point might be sub-optimal in case of major environmental changes (e.g., double the aggregation area) or system changes (e.g., half of the robots fail)
- parameter difficult to tune analytically if noise distribution non parametric (e.g. no assumption on the distribution possible)
Example of Performance Landscape

Threshold optimization with macroscopic model (numerical integration)

Robots stop too early

Robots still keep working and keep the seeds in their grippers

Optimal threshold = 27 min for a given cluster size at a given time
Robots are not Ants: Can we exploit Wireless Com for Demand Estimation?

NOTE: com only used for stimulus estimation sharing; no central decision making as in market-based approaches!!

- **PrFT**: Threshold-based algorithm with **private** demand estimation and **fixed** thresholds; algorithms of the previous slides
- **PrVT**: variable threshold; not continuously adapting but calibration phase, then fixed threshold → result in a heterogeneous, multi-caste group
- **PuFT**: fixed threshold but demand estimated via wireless sharing among all members (average)
- **PuVT**: variable threshold (calibration) + demand estimation shared

- **Arena 1**: standard arena (that of previous slides), 80x80 cm, 20 seeds
- **Arena 2**: larger arena, 178x178 cm, 20 seeds
- **Arena 3**: standard arena, 20 seeds, 5 seeds added after 2 hours into the aggregation process
Performance Comparison of Different Variants of the Algorithm

In bold the lowest Integrated Cost (within 1 std dev):

\[
F_{\text{cost}}(x_t, y_t, z_t) = \gamma_x (X_{opt} - x_t)^2 + \gamma_y (Y_{opt} - y_t)^2 + \gamma_z (Z_{opt} - z_t)^2
\]

\[(2) \]

\(x_t\) = average cluster size at time step t; \(X_{opt} = 20\)
\(y_t\) = the average number of clusters at time step t; \(Y_{opt} = 1\)
\(z_t\) = average number of active workers at time step t; \(Z_{opt} = 0\)

\(\gamma_x, \gamma_y, \gamma_z\) = weighting parameters

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Arena1</th>
<th>Arena2</th>
<th>Arena3</th>
</tr>
</thead>
<tbody>
<tr>
<td>PrFT</td>
<td>138.9 ± 7.0</td>
<td>324.9 ± 10.8</td>
<td>154.5 ± 7.9</td>
</tr>
<tr>
<td>PrVT</td>
<td>155.1 ± 8.0</td>
<td>231.9 ± 10.7</td>
<td>152.2 ± 8.7</td>
</tr>
<tr>
<td>PuFT</td>
<td>138.2 ± 6.9</td>
<td>337.6 ± 10.7</td>
<td>122.4 ± 6.4</td>
</tr>
<tr>
<td>PuVT</td>
<td>141.3 ± 5.2</td>
<td>227.2 ± 9.4</td>
<td>134.2 ± 9.1</td>
</tr>
<tr>
<td>W/o WA</td>
<td>227.4 ± 4.8</td>
<td>310.8 ± 8.8</td>
<td>197.2 ± 5.9</td>
</tr>
</tbody>
</table>

Note: W/o WA = without work allocation (no activity control)
An Introduction to Sensor Networks
Intro

Selected Slides from MOBICOM 2002 Tutorial T5

Wireless Sensor Networks

Deborah Estrin & Mani Srivastava
destrin@cs.ucla.edu, mbs@ucla.edu
UCLA

Akbar Sayeed
akbar@engr.wisc.edu
University of Wisconsin, Madison

Copyright © 2002
Embedded Networked Sensing Potential

- Micro-sensors, on-board processing, and wireless interfaces all feasible at very small scale
 - can monitor phenomena “up close”
- Will enable spatially and temporally dense environmental monitoring
- **Embedded Networked Sensing** will reveal previously unobservable phenomena

Source: D. Estrin, UCLA

- Seismic Structure response
- Contaminant Transport
- Marine Microorganisms
- Ecosystems, Biocomplexity
Motivating Applications
App#1: Seismic

- Interaction between ground motions and structure/foundation response not well understood.
 - **Current seismic networks not spatially dense enough** to monitor structure deformation in response to ground motion, to sample wavefield without spatial aliasing.

- Science
 - Understand response of buildings and underlying soil to ground shaking
 - Develop models to predict structure response for earthquake scenarios.

- Technology/Applications
 - Identification of seismic events that cause significant structure shaking.
 - Local, at-node processing of waveforms.
 - Dense structure monitoring systems.

- ENS will provide field data at sufficient densities to develop predictive models of structure, foundation, soil response.

Source: D. Estrin, UCLA
Field Experiment

- 38 strong-motion seismometers in 17-story steel-frame Factor Building.
- 100 free-field seismometers in UCLA campus ground at 100-m spacing

Source: D. Estrin, UCLA
Research challenges

• Real-time analysis for rapid response.
• Massive amount of data → Smart, efficient, innovative data management and analysis tools.
• Poor signal-to-noise ratio due to traffic, construction, explosions, ….
• Insufficient data for large earthquakes → Structure response must be extrapolated from small and moderate-size earthquakes, and force-vibration testing.

• First steps
 – Monitor building motion
 – Develop algorithm for network to recognize significant seismic events using real-time monitoring.
 – Develop theoretical model of building motion and soil structure by numerical simulation and inversion.
 – Apply dense sensing of building and infrastructure (plumbing, ducts) with experimental nodes.

Source: D. Estrin, UCLA
App#2: Contaminant Transport

- **Science**
 - Understand intermedia contaminant transport and fate in real systems.
 - Identify risky situations before they become exposures. Subterranean deployment.

- Multiple modalities (e.g., pH, redox conditions, etc.)
- Micro sizes for some applications (e.g., pesticide transport in plant roots).
- Tracking contaminant “fronts”.
- At-node interpretation of potential for risk (in field deployment).

Source: D. Estrin, UCLA
ENS Research Implications

- Environmental Micro-Sensors
 - Sensors capable of recognizing phases in air/water/soil mixtures.
 - Sensors that withstand physically and chemically harsh conditions.
 - Microsensors.

- Signal Processing
 - Nodes capable of real-time analysis of signals.
 - Collaborative signal processing to expend energy only where there is risk.

Source: D. Estrin, UCLA
App#3: Ecosystem Monitoring

Science
• Understand response of wild populations (plants and animals) to habitats over time.
• Develop in situ observation of species and ecosystem dynamics.

Techniques
• Data acquisition of physical and chemical properties, at various spatial and temporal scales, appropriate to the ecosystem, species and habitat.
• Automatic identification of organisms (current techniques involve close-range human observation).
• Measurements over long period of time, taken in-situ.
• Harsh environments with extremes in temperature, moisture, obstructions, ...

Source: D. Estrin, UCLA
WSN Requirements for Habitat/Ecophysiology Applications

- Diverse sensor sizes (1-10 cm), spatial sampling intervals (1 cm - 100 m), and temporal sampling intervals (1 ms - days), depending on habitats and organisms.
- Naive approach → Too many sensors → Too many data.
 - In-network, distributed information processing
- Wireless communication due to climate, terrain, thick vegetation.
- Adaptive Self-Organization to achieve reliable, long-lived, operation in dynamic, resource-limited, harsh environment.
- Mobility for deploying scarce resources (e.g., high resolution sensors).

Source: D. Estrin, UCLA
Field Experiments

• **Monitoring ecosystem processes**
 – Imaging, ecophysiology, and environmental sensors
 – Study vegetation response to climatic trends and diseases.

• **Species Monitoring**
 – Visual identification, tracking, and population measurement of birds and other vertebrates
 – Acoustical sensing for identification, spatial position, population estimation.

Source: D. Estrin, UCLA
Enabling Technologies
Enabling Technologies

Embed numerous distributed devices to monitor and interact with physical world

- **Embedded**
 - Control system w/ Small form factor Untethered nodes

- **Networked**
 - Exploit collaborative Sensing, action

- **Sensing & Actuation**
 - Tightly coupled to physical world

Exploit spatially and temporally dense, in situ, sensing and actuation

Source: D. Estrin, UCLA
Sensors & Actuators

- **Passive elements**: seismic, acoustic, infrared, strain, salinity, humidity, temperature, etc.
- **Passive arrays**: imagers (visible, IR), biochemical
- **Active sensors**: radar, sonar
 - High energy, in contrast to passive elements
- **Actuators**: TBD
- **Technology trend**: use of IC technology for increased robustness, lower cost, smaller size

Source: D. Estrin, UCLA
Challenges
Sensor Node Energy Roadmap

- Deployed (5W)
- PAC/C Baseline (.5W)
- (50 mW)
- (1mW)

Source: ISI & DARPA PAC/C Program
Communication/Computation Technology Projection

<table>
<thead>
<tr>
<th></th>
<th>1999 (Bluetooth Technology)</th>
<th>2004</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communication</td>
<td>(150nJ/bit)</td>
<td>(5nJ/bit)</td>
</tr>
<tr>
<td></td>
<td>1.5mW*</td>
<td>50uW</td>
</tr>
<tr>
<td>Computation</td>
<td></td>
<td>~ 190 MOPS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(5pJ/OP)</td>
</tr>
</tbody>
</table>

Assume: 10kbit/sec. Radio, 10 m range.

Large cost of communications relative to computation continues
New Design Themes

• **Long-lived** systems that can be **untethered** and **unattended**
 – Low-duty cycle operation with bounded latency
 – Exploit redundancy and heterogeneous tiered systems

• **Leverage data** **processing inside the network**
 – Thousands or millions of operations per second can be done using energy of sending a bit over 10 or 100 meters (Pottie00)
 – Exploit computation near data to reduce communication

• **Self configuring** systems that can be deployed **ad hoc**
 – Un-modeled physical world dynamics makes systems appear ad hoc
 – Measure and adapt to unpredictable environment
 – Exploit spatial diversity and density of sensor/actuator nodes

• **Achieve desired global behavior with adaptive localized algorithms**
 – Cant afford to extract dynamic state information needed for centralized control

Source: D. Estrin, UCLA
From Embedded Sensing to Embedded Control

- Embedded in unattended “control systems”
 - Different from traditional Internet, PDA, Mobility applications
 - More than control of the sensor network itself
- Critical applications extend beyond sensing to control and actuation
 - Transportation, Precision Agriculture, Medical monitoring and drug delivery, Battlefield applications
 - Concerns extend beyond traditional networked systems
 - Usability, Reliability, Safety
- Need systems architecture to manage interactions
 - Current system development: one-off, incrementally tuned, stove-piped
 - Serious repercussions for piecemeal uncoordinated design: insufficient longevity, interoperability, safety, robustness, scalability...

Source: D. Estrin, UCLA
Sample Layered Architecture

<table>
<thead>
<tr>
<th>User Queries, External Database</th>
</tr>
</thead>
<tbody>
<tr>
<td>In-network: Application processing, Data aggregation, Query processing</td>
</tr>
<tr>
<td>Data dissemination, storage, caching</td>
</tr>
<tr>
<td>Adaptive topology, Geo-Routing</td>
</tr>
<tr>
<td>MAC, Time, Location</td>
</tr>
<tr>
<td>Phy: comm, sensing, actuation, SP</td>
</tr>
</tbody>
</table>

Resource constraints call for more tightly integrated layers

Open Question:

Can we define an Internet-like architecture for such application-specific systems??

Source: D. Estrin, UCLA
Taxonomy of Applications and a few Concrete Design Examples
Design Customization and Validation

Systems Taxonomy

- **Spatial and Temporal Scale**
 - Extent
 - Spatial Density (of sensors relative to stimulus)
 - Data rate of stimuli
- **Variability**
 - Ad hoc vs. engineered system structure
 - System task variability
 - Mobility (variability in space)
- **Autonomy**
 - Multiple sensor modalities
 - Computational model complexity
- **Resource constraints**
 - Energy, BW
 - Storage, Computation

Load/Event Models

- **Frequency**
 - Spatial and temporal density of events
- **Locality**
 - Spatial, temporal correlation
- **Mobility**
 - Rate and pattern

Metrics

- **Efficiency**
 - System lifetime/System resources
- **Resolution/Fidelity**
 - Detection, Identification
- **Latency**
 - Response time
- **Robustness**
 - Vulnerability to node failure and environmental dynamics
- **Scalability**
 - Over space and time

Source: D. Estrin, UCLA
Two Main Application Categories

C1: Low-duty cycle continuous sampling (e.g., temperature/humidity field monitoring over years)

C2: Event-based monitoring (e.g., human, animal species monitoring) → probably the most appropriate one for SI algorithms since collaboration in a dynamic environment emphasized
Ex. C1:
The WISARD Project (Flikkema 2001 -)

- PIC based HW, no (standard) OS
- Backup for network disruption: enough data storage capacity for lasting more than battery life time …
- Application in environmental monitoring:
 - Microclimate measuring in the Redwood forest
 - Impact of fine-scale ecological disturbances on diversity
 - Micro-measurement of energy, water, carbon fluxes

Renewed 5 years NSF grant, Paul Flikkema will be with us in June 2006 (as invited professor)
Ex. C2: EPFL-UNIL
Avian Tracking Project
(Freitag, Martinoli, Urzelai, 1995-1999)

Goals

• Understanding better the overall behavior of migratory Wrynecks (endangered species) and therefore actively intervene for improving his survivability
• Monitoring nest passages, hunting movements, environmental cues (e.g., temperature inside and outside the nest)
EPFL-UNIL Avian Project

Overview of the monitoring system

≈ 200 m
≈ 30 m

Huntig zone

Nest

HMU = hunting monitoring unit
NMU = nest monitoring unit
EPFL-UNIL Avian Tracking Project

Hunting Monitoring Unit

- Active radio transponders (low duty cycle)
- RSSI-based distance estimation
- No networking among HMU
- Energy management based on rough estimation of bird’s habits
- Data collection with HP calculator/laptop
- Never tested in the field with tagged wrynecks
EPFL-UNIL Avian Tracking Project

Nest Monitoring Unit

- Passive Integrated Transponders (PIT), 16-bit bound to animal’s leg
- Energy management based on rough estimation of bird’s habits and coupling of light barrier with PIT reader
- Male/female identification
- Data collection with HP calculator/laptop
- Tested in the field with tagged Wrynecks

[Freitag, Martinoli, Urzelai, *Bird Study*, 2001]
Conclusion – Development and field experience

- Extremely tough experience (1 month/year for testing the equipment in the field with tagged Wrynecks; no failure admitted)
- Birds do not usually play the game as we would like to (camouflage, …)
- Packaging: major issue (waterproof case, connectors, …)
- Not low-stress monitoring (bird captured with nets, …); very invasive technique but still … tagless techniques?
- Wireless technology at that time very primitive.
- At that time 1 week full autonomy: great! But networking and collaboration could have allowed much better performances …
- Much better than standard human-guided radio-telemetry
- Full time job for having impact! (not in parallel to a PhD …)
Target Tracking using WSN

• Advantage of networking:
 – Allows for real-time collaboration ➔ in-network processing ➔ more data acquired and only relevant, pre-processed data stored
 – Energy saving: wake up only when needed (through prediction, load balancing)
 – Centralized data gathering possible (sink)
 – Centralized network control possible (e.g., software upgrade, reset, etc.)

• Drawbacks:
 – Increased power consumption
 – Increased node complexity
Tracking Challenges

• Data dissemination and storage
• Resource allocation and control
• Operating under uncertainty
• Real-time constraints
• Data fusion (measurement interpretation)

• Multiple target disambiguation
• Track modeling, continuity and prediction
• Target identification and classification
Tracking Domains

• Appropriate strategy depends on the sensors’ capabilities, domain goals and environment
 – Requires multiple measurements?
 – Bounded communication?
 – Target movement characteristics?
 – No single solution for all problems

• For example…
 – Limited bandwidth encourages local processing
 – Limited sensors requires cooperation
Why Not Centralized Tracking?

- Scale!
- Data processing combinatorics
- Resource bottleneck (communication, processing)
- Single point of failure
- Ignores benefits of locality
Why Not (fully) Distributed Tracking? (i.e. everyone tracks)

- Redundant information and computation
- Can increase uncertainty
- Lack of unified view
- High communication costs
Organization-Based Tracking

• Use structure, roles to control data and action flow

• Can be static, or dynamically evolved
 – [Brooks 2003]: Spontaneous coalition formation
 – [Horling 2003]: Partitions, mediated clustering
 – [Li 2002]: Hierarchical information fusion
 – [Yadgar 2003]: Hierarchical teams
 – [Wang 2003]: Roles and group formation
 – [Zhao 2002]: Geographic groups
Routing and Information Flow Management in WSN

– IP-based protocol not suited (different from traditional wireless networks, S-D ID matter)

– Two approaches: data-centric and location-centric

– **Data-centric**: publish/subscribe architecture based on data characteristic (e.g. Directed Diffusion routing algorithm, Estrin)

– **Location-centric**: geographic cells play the role of nodes in IP networks (e.g., UW-routing, Ramanathan)
Ex. C2: Location-Centric Tracking
(Brooks et al. 2002)

Control and data flow at each node:

• Initialization: disseminate sensor information
• Receive candidates: describe approaching targets
• Local detections: gather measurements
• Merge detections: form track, compare candidates
• Determine confidence: estimate uncertainty
• Estimate track: predict future target location
• Transmit track: notify relevant sensors
Location-Centric Tracking

- “Closest point of approach” (CPA) measurements
- Target detection causes **cell** formation
 - Cells formed around the target’s estimated location
 - Intended to include relevant sensors
 - Several modalities (e.g. acoustic, IR, etc.)
- Manager is selected
 - Node with greatest signal strength
- Manager collects local CPA’s
 - Linear regression over CPA node locations
Location-Centric Tracking

• Estimated location compared to prior tracks
 – Projections from candidate tracks

• Cell created for track in new area
 – Size is a function of target velocity
 – Track information propagated to cell

• Tracking repeats…
Results (Brooks et al, 2002)

Data association and Collaborative Signal Processing (Filtering): single target, 40 nodes deployed along a road

No filtering

Extended Kalman Filtering
(asumption linear trajectory)

Lateral Inhibition
(no assumption on target, wait time proportional goodness-of-fit)
SI and Wireless Sensor Networks
WSN and SI

• **SI principles** might have impact because:
 – Volume/mass constraints and therefore limited resources at the individual node level
 – Large number of nodes
 – Autonomy
 – Collaboration among nodes
 – Self-organization

• And might **not** have impact because:
 – Most of them assume underlying mobile systems
 – Most of them do not exploit direct communication
 – Most of them rely on full distributedness and often centralization and synchronization means energy saving
WSN and SI

- WSN push for redefinition of SI, less bio-inspired
- We have not clearly identified yet where self-organization principles and SI-based algorithms can be competitive.
- You have played with a first attempt/toy example in the lab (threshold-based algorithm applied to load balancing in a monitoring task)
WSN vs. Robots as Demonstrators for SI

- Another type of distributed HW platform: usually static nodes but still sensing, computing, communicating, acting (?)
- Sensor node = mobile robot without wheel or mobile robot = sensor node with wheels?
- Mobility changes completely the picture of the problem: more unpredictability, noise, … .
- Self-locomotion even more so: real-time control loop at the node level + energy budget radically different
Pointers and Additional Literature
Pointers on WSN

- Mobicom 02 tutorial:
 http://nesl.ee.ucla.edu/tutorials/mobicom02/
- Course list:
 http://www-net.cs.umass.edu/cs791_sensornets/additional_resources.htm
- TinyOS:
 http://www.tinyos.net/
- Smart Dust Project
 http://robotics.eecs.berkeley.edu/~pister/SmartDust/
- UCLA Center for Embedded Networking Center
 http://www.cens.ucla.edu/
- Intel research Lab at Berkeley
 http://www.intel-research.net/berkeley/
- NCCR-MICS at EPFL and other Swiss institutions
 http://www.mics.org
Additional Literature – Week 10

Papers