Distributed Intelligent Systems and Algorithms Laboratory EPFL

Lab 8: Solutions
2 Localization with positioning systems

1. (Q): The code we use in this lab might seem a bit longer and more complex than what you are
used to. Therefore, in order to ease your task, we have already provided the whole code
structure. You will only modify the main() function as well as some init() and get()
functions.

Take some time to read the main() in controller.c. What are the five main steps in the while
loop, and can you describe a bit their goal? Read the file odometry.h and the lines 36 to 76 in
controller.c. What do contain the structures simulation_t, measurement_t and pose_t?

Answer:
1. Perception / Measurement
The robot must interpret its sensors to extract meaningful data.

2. Localization
The robot must determine its position in the environment.

3. Cognition / Action
The robot must decide how to act to achieve its goals (based on previous information).

4. Motor Controls
The robot must modulate its motor outputs to achieve the desired trajectory.

5. Logging
This is a necessary step to understand how the variables are evolving with time.

Generally, it is a good practice to store meaningful data inside a structure in C. It might be

easier to maintain, debug, and understand your code. It is also a good practice to organize

your code when you start a project:

- simulation_t: contains the WbDeviceTag objects used in the simulation (sensors,
actuator, ...).

- measurement_t: contains the measurement obtained by the sensors.

- pose_t: contains the 2D pose of the robot (i.e. X, y and orientation / heading).

2. (ID: At the top of the file controller.c, set VERBOSE_GPS to true, to print the GPS values
in the terminal. Then, compile your robot controller.

Answer: -
3. (S): Run the simulation. Click on the window of the world (this will let Webots capture your
keyboard inputs), then use your keyboard to move the robot in the arena. The corresponding

action and keyboard keys are listed in Table 2.

Table 1: Keyboard keys and corresponding actions

Keyboard key Simulation actions
R The robot starts to move
S The robot stops
U Increases the speed
D Decreases the speed
Up Arrow The robot moves forward
Down Arrow The robot moves backward
Left Arrow The robot turns left

NS, Lab 8: Positioning Systems and Odometry 1

Distributed Intelligent Systems and Algorithms Laboratory EPFL

| Right Arrow | The robot turns right |
Hint: You need to press R first for the robot to start moving.

Answer: -

4. (Q): From the values obtained in the terminal, can you deduce in which direction point the GPS
uses the X, y, and z axes with respect to {World} frame? Can you move the robot to the origin
of the GPS coordinates (i.e., at least, to reach the point where two of the three values are zeros)?
Hint: Look at line 195 to see the print command.

Answer: The GPS uses the same convention for the x-, y- and z-axis as the world frame. The
origin of the GPS frame is in the center of the arena.

5. (I): The GPS does not provide any information about the orientation (heading) of the robot.
One option is to use the delta position vector (difference between previous GPS values and
actual ones) and to compute its angle, as can be seen in controller_get_heading().

Uncomment the indicated lines in the function controller_get pose() to fill the pose
structure with the GPS positions and heading. The pose should be written in pose_t structure
with respect to the reference frame {A}, which coincides with the {Body} frame at the
beginning of the motion, detailed in Figure 3.

Note: The variable _pose_origin contains the position and orientation of the reference
frame’s origin A expressed in the world frame (same as GPS values). Its fields are x, y, and
heading.

Set the VERBOSE_POSE to true and compile.

Answer: -

6. (S): Run the simulation by again moving the e-puck robot through the keyboard and try to
follow the square. Does the pose behave as you expected? If not, try to correct your code.

Answer: -

7. (Q): Is the heading angle still correct when you move your robot backward or rotate it on itself?
Can you propose a sensor to get the orientation of the robot directly?

Answer:

If you move your robot backward, the computed heading has a shift of T w.r.t to the real one.
If your robot rotates on itself, the delta position in the x and y directions becomes really close
to 0 meters. Therefore, a small error in position can have a large impact on the computed angle.
You should see a large oscillation of the orientation.

Alongside the GPS, it is common to add a magnetometer (compass) to measure the bearing
(heading) of the robot directly.

NS, Lab 8: Positioning Systems and Odometry 2

Distributed Intelligent Systems and Algorithms Laboratory EPFL

3 Odometry using an accelerometer

8. (S): The controller leveraged in the previous part is again used here. Set VERBOSE ACC to
true and compile the robot’s controller. Start the simulation on Webots and do not move the
robot. You should see the values of the accelerometer in the terminal. Why are those values not
zero, what do these values mean (e.g., what force is involved)?

Answer: We see the effect of gravity on the accelerometer. This force causes a bias on each
axis of the accelerometer. To obtain the actual acceleration of the robot, one should remove
these values. Take note that the effect of gravity on each accelerometer axis changes with the
robot's actual orientation.

9. (B): We want to focus on a thought experiment for a moment now: Imagine your e-puck is
falling (no friction with air), and the accelerometer returns zero values for all three axes. With
regard to the previous question (static conditions), did you expect those values? What is an
accelerometer really measuring (recall the schematic representation of the accelerometer sensor
mentioned in the lecture)?

Answer: A really good explanation comes from [1]:

“A typical accelerometer could be modeled as a mass on a spring. The position of the mass,
when the spring is not compressed or stretched, is defined as zero and corresponds to zero
reported acceleration.

When the spring is compressed or stretched, the displacement of the mass from its zero position
is measured (using one of many available techniques) and reported as a positive or negative

acceleration.

So, what is reported is a displacement of the mass, which may or may not correspond to the
acceleration of the accelerometer that we would measure externally.

The diagrams below illustrate how it works in x or y directions, where gravity does not play a

role.
Resting Acceleration Acceleration
-4

| |

| :

| |

! 1 | 1

| |

|

|

|

|

i |

| | | | |

| |

| |

| |

| |

| |

| i

Force acting on spring=0 Force acting on spring = ma Force acting on spring = -ma

Whenever the body of the accelerometer accelerates, it pushes or pulls the spring, which, in
turn, pushes or pulls the mass. The force required to accelerate the mass, ma, will cause the
spring to compress or stretch, and the resulting displacement of the mass will be measured and
reported as a positive or a negative acceleration.

For the z direction, illustrated in the diagrams below, the dynamics are different.

NS, Lab 8: Positioning Systems and Odometry 3

Distributed Intelligent Systems and Algorithms Laboratory EPFL

Resting Resting Free fall

Force acting on spring = mg Force acting on spring = -mg Force acting on spring = ~0

At rest, the spring is compressed or stretched to counter the weight of the ball.

In a free fall, when all parts of the accelerometer experience the same acceleration, the mass
accelerates due to gravity - not due to the push or the pull of the spring. Therefore, the spring
does not experience any forces; hence, there is no compression or stretching and no
displacement, and the reported acceleration is zero.

This description would not be entirely accurate if the resistance of the air were considered.
Since such resistance would slightly reduce the acceleration of the falling accelerometer, the
spring would have to compress or stretch a bit to adjust (reduce) the acceleration of the mass
accordingly.”

10. (S): Uncomment the lines (122 — 127 and 141) in main(). This will force the robot to stay

static for five seconds. This time is used to estimate the bias of the accelerometer. The resulting
mean values for the acceleration are stored in the table _meas.acc_mean in the file controller.c.
Compile the robot controller and start the simulation. Let your robot move forward in the x-
axis direction using the keyboard (press R). Stop it before it reaches the end of the arena (press
S).
A file data.csv has been created inside the controller folder. This file contains the simulation
logs. Run MATLAB code plot_main.m (only part A) to plot the values of the accelerometer.
What is the frame of the accelerometer? Which indexes of the accelerometer array (acc)
correspond to the x-, y- and z-axis of frame A (see Figure 2)?

Answer:
The accelerometer frame is the same as the body frame.

acc[0]

2F T T T T T T T T 7
-
K4
.g. 0 4‘_"_%’%\
Q
%
-2t | L L L I I I | 1
5 10 15 20 25 30 35 40 45
Time [s]
x10* acc[1]
T T T T T T T T
AT b
2
E,l 1
Q
o
©
0 : : : ; : : : :
5 10 15 20 25 30 35 40 45
Time [s]
acc[2]
.99 T T T |
9851 i
E 93] {
g I
S 9.75
. . . | |
5 10 15 20 25 30 35 40 45
Time [s]

NS, Lab 8: Positioning Systems and Odometry 4

Distributed Intelligent Systems and Algorithms Laboratory EPFL

11. (S): Look at the odometry equations leveraging the accelerometer implemented in the
MATLAB function odo_acc.m and see if they match with the equations you defined in the
previous question. Use the code plot_main.m (only part B), to plot the odometry. What
happens if you don’t remove the mean (bias) before the integration?

Answer:
You should obtain results similar to the following.
Odometry plot:

x trajectory : odometry vs ground truth (gps)

Ground Truth : GPS [
Odometry : Accelerometer | |

0.8 |- b

0.6 [b

x [m]

0.4 b

0.2 | b

0 4

L L ! 1 1 1 1 L A

5 10 15 20 25 30 35 40 45
Time [s]

Replace acc(1)-acc_mean(1) by acc(1) inline 7 of odo_acc.m to omit bias:

x trajectory : odometry vs ground truth (gps)

Ground Truth : GPS
Odometry : Accelerometer | 7

0.6 b

x [m]

04r 1

02r 4

0 4

5 10 15 20 25 30 35 40 45
Time [s]

Since the bias is very small in the x direction, both figures are very similar. However, if the bias
is large, then the odometry quickly diverges if the bias is not removed. Additionally, the
odometry continues to increase even if the robot stays immobile. The explanation is that the
odometry error is integrated across time, and the resulting double integration of a constant
(i.e., odometry error due to accelerometer bias) is a parabola. Finally, one can notice first that
removing the offset improves the quality of the odometry, and second, the odometry values only
start to increase when the robot moves.

NS, Lab 8: Positioning Systems and Odometry 5

Distributed Intelligent Systems and Algorithms Laboratory EPFL

12.(1): Implement your equations for the odometry in Webots, within the function
odo_compute_acc() of the file odometry.c. Run the simulation and let your robot run in a
straight line. Analyze the resulting logs in MATLAB using plot_main.m (only part C). Have
you obtained results similar to those previously obtained in MATLAB? If not, try to correct
your code or explain why.

Answer:

odo_compute_acc() in odometry.c:

double acc_wx = (acc[@] - acc_mean[0]);
_odo_speed_acc.x += acc_wx * T;

_odo_pose_acc.x += _odo_speed_acc.x * _T;

You should obtain the same results as your MATLAB implementation.

x trajectory : odometry vs ground truth (gps)

Ground Thruth : GPS
09 Odometry : Accelerometer | -

Time [s]

NS, Lab 8: Positioning Systems and Odometry 6

Distributed Intelligent Systems and Algorithms Laboratory EPFL

4. Odometry using wheel encoders

In this part, we are interested in continuing our investigation with odometry. This time, we propose
to take advantage of the type of locomotion of the e-puck, a differential wheeled vehicle, to design our
2D motion model. In fact, the simulated e-puck provides wheel encoders that return information on
the actual position of its wheels. It is worth noticing that there is a main difference between the real e-
puck and its simulated version. On the one hand, the real e-puck uses stepper motors, characterized by
1000 steps (increments) per wheel revolution; this type of motor is controlled in an open loop and
provides information on the wheel position by itself. On the other hand, the simulated e-puck has one
hinge joint (consider it as the rotating shaft) per wheel, to which a rotational motor and a position
sensor are attached. The position sensors simulate wheel encoders, a sensing device type that, in reality,
is combined with DC motors for closed-loop control; they are physically separated from the motors
but anchored to the rotating shaft to obtain the same increment counting functionality.

13.(S): The same robot controller leveraged in Part 3 is also used for this part. Set VERBOSE_ENC
to true and compile the robot’s controller. Do a small run in the arena with the e-puck. What is
the unit used by the wheel encoders, and how do they convert it into meters? Is it an absolute
or a relative measurement of the wheel position?

Answer:

Wheel encoders are given in rad.

We need to multiply the encoder values by the wheel radius.
The simulated e-puck uses absolute encoders.

14. (S): Do a complete run around the square with the e-puck. Then, run part D of plot_main.m to
plot the odometry based on the wheel encoders (note that the odometry is already implemented
for you in MATLAB).

Answer: see next question for example results.

15. (S): Look at the way the odometry is implemented in MATLAB in odo_enc.m. Try to reduce
the deterministic errors by slightly changing the values of the WHEEL_RADIUS and
WHEEL_AXIS. Your odometry curves should get closer to those obtained with the GPS.

Answer:

x -y plan : odometry vs ground truth (gps) x -y plan : odometry vs ground truth (gps)

0.8

Ground Thruth : GPS
Odometry : Wheel encoders

Ground Thruth : GPS
Odometry : Wheel encoders
06

04

y [m]

0.2

05 0 05 1 04 02 0 02 04 06 08 1 12
Heading : odometry ¥8]ground truth (gps) Heading : odometry W8]ground truth (gps)

Ground Thruth : GPS
Odometry : Wheel encoders

heading [Rad]
b o owm
heading [Rad]

0 20 30 40 50 60 70 8 9 100 110 1 20 3 40 50 6 70 8 9 100 110
Time [s] Time [s]

2D Odometry based on wheel encoders. Left : Uncalibrated Odometry.
Right : Calibrated Odometry

16.(1): Implement your equations for the odometry in Webots in the function
odo_compute_enc() in file odometry.c. Run the simulation and follow the square again.
Compare the resulting logs on MATLAB using plot_main.m (only part E). As before, you can
change the values of the WHEEL_RADIUS and WHEEL_AXIS to improve your odometry.

Answer:
odo_compute_encoders() inodometry.c:

NS, Lab 8: Positioning Systems and Odometry 7

Distributed Intelligent Systems and Algorithms Laboratory

EPFL

Aleft_enc

double omega

// Rad to meter

// Comupute speeds

double speed
// Compute the
double speed_wx
double speed_wy

double omega_w

: Convert the wheel encoder units into meters

*= WHEEL_RADIUS;

Aright_enc *= WHEEL_RADIUS;

: Compute the forward and the rotational speed
(Aright_enc - Aleft_enc) / (WHEEL_AXIS * _T);
(Aright_enc + Aleft_enc) / (2.0 * _T);

speed into the world frame (A)

= speed * cos(_odo_pose_enc.heading);

speed * sin(_odo_pose_enc.heading);

= omega;

// Integration : Euler method

_odo_pose_enc.x += speed_wx * _T;

_odo_pose_enc.y += speed_wy * T;

_odo_pose_enc.heading += omega_w * _T;

x -y plan : odometry vs ground truth (gps)
0.8

Ground Thruth : GPS
Odometry : Wheel encoders

y [m]

0.2

U T
.

. .
-0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2
Heading : odometey W8]ground truth (gps)

Ground Thruth : GPS

Odometry : Wheel encoders

I . L L | | .
10 20 30 40 50 60 70 80 90
Time [s]

heading [Rad]
o

I I
100 110

17.(B): Decrease the speed (press the D key several times) of the motors and let your robot carry
out a complete tour of the square. Compare the logs on MATLAB code plot_main.m (only part
E). What are your main observations?

Answer: You should observe more accurate trajectory estimations.

18.(B): Increase the speed (press the U key several times) of the motors and let your robot carry

out a complete tour of the square. Compare the logs on MATLAB code plot_main.m (only part

E). What are your main observations?

Answer: You should observe less accurate trajectory estimations.

NS, Lab 8: Positioning Systems and Odometry 8

Distributed Intelligent Systems and Algorithms Laboratory EPFL

19. (B): Which strategies could we use to reduce the error in odometry in terms of motor control?

Think about the unmodeled dynamics of our motion models and when they occur.

Answer:
From the lecture course, we know that the following five error sources are involved in our case
of study. We can assume that the three first steps are reduced with proper calibration since they
are static and deterministic errors.
1. Limited encoder resolution
2. Wheel misalignment and small differences in wheel diameter
3. Integration errors
4. Variation of the contact point of the wheel
5. Unequal floor contact (e.g., wheel slip, nonplanar surface)
The last two ones are not considered in our basic motion model. By comparing Figures 5 and
6, one can notice the robot underestimates the real value of its orientation while turning on
itself.
One partial explanation is that the centripetal acceleration is equal to v¥/R, and the resulting
force pulls the robot out of the desired trajectory. Large forward speed coupled with a low
rotation radius leads to large centripetal acceleration. This is the reason why when you drive
a car, it is better to reduce your speed before an abrupt turn if you want to stay on the track.
Additionally, our motion model is purely kinematic; neither the mass nor the inertia of the robot
is considered.
The key message here is the way your robot moves impacts your odometry accuracy. An
aggressive motion (high acceleration) is likely to result in poor estimation of your robot’s pose.
The following three points are some possible ways to explore in order to improve your robot’s
localization. Feel free to implement and test several of them in your course project.
1. Mind both the robot’s motion and motor controllers
2. Improve your odometry model
3. Fuse different data and information (see Lab09)

20. (B): In the recommended reading material for week 9, Chapter 5 of Introduction to Autonomous

Mobile Robot (2004, R. Siegwart and I. Nourbakhsh) describes another motion model for
differential-wheeled robots. The equations (5.3 — 5.6) were implemented in MATLAB for you
in odo_enc_bonus.m. Try to reproduce them in Webots (you can create your function in
odometry.c to replace the default odo_compute_encoders() function). Does the
odometry improve when compared to your previous implementation?

Answer:

In odometry.c :

Create a new function odo_compute_encoders_bonus()
Add a new variable static pose_t _odo_pose_enc_bonus

Reset this new variable in the odo_reset()

Add a verbose flag #define VERBOSE_ODO_ENC_BONUS false

In odometry.h :

Add the declaration of odo_compute_encoders_bonus ()

In controller.c :

Create a new variable static pose_t _odo_enc_bonus

Reset this new variable in the controller_init()

Call your new odometry function in main()

Modify both function controller_init_log() and controller_print_log()

NS, Lab 8: Positioning Systems and Odometry 9

Distributed Intelligent Systems and Algorithms Laboratory EPFL

/**

* @brief Compute the odometry using the encoders. Use the motion model
proposed in bonus question

*

* @param odo The odometry

* @param[in] Aleft_enc The delta left encoder

* @param[in] Aright_enc The delta right encoder

*/

void

odo_compute_encoders_bonus(pose_t* odo, double Aleft_enc, double

Aright_enc)

{

// Rad to meter
Aleft_enc *= WHEEL_RADIUS;

Aright_enc *= WHEEL_RADIUS;

// Compute forward speed and angular speed

double omega = (Aright_enc - Aleft_enc) / (WHEEL_AXIS * _T);

double speed (Aright_enc + Aleft_enc) / (2.0 * T);

// Apply rotation (Body to World)

// smaller integration step for the angle (1/2)
_odo_pose_enc_bonus.heading += omega * _T / 2.0;
double a = _odo_pose_enc_bonus.heading;

double speed wx = speed * cos(a);

double speed_wy = speed * sin(a);
// Integration : Euler method
_odo_pose_enc_bonus.x += speed_wx * _T;

_odo_pose_enc_bonus.y += speed_wy * _T;

// smaller integration step for the angle (2/2)

_odo_pose_enc_bonus.heading += omega * _T / 2.0;

NS, Lab 8: Positioning Systems and Odometry 10

Distributed Intelligent Systems and Algorithms Laboratory EPFL

memcpy (odo, & odo_pose_enc_bonus, sizeof(pose_t));
if(VERBOSE_ODO_ENC_BONUS)

printf("0ODO with wheel encoders (Bonus): %g %g %g\n", odo->x , odo-
>y , RAD2DEG(odo->heading));

}

You should observe a slight improvement in terms of performance using this new motion model.
5. References

[1] : V.F. (https://physics.stackexchange.com/users/189477/v-f), Why an accelerometer shows
zero force while in free-fall, URL (version: 2018-04-28): https://physics.stackexchange

.com/q/402645

NS, Lab 8: Positioning Systems and Odometry 11

https://physics.stackexchange.com/q/402645
https://physics.stackexchange.com/q/402645

