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Lab 8: Solutions 

2 Localization with positioning systems 

 

1. (Q): The code we use in this lab might seem a bit longer and more complex than what you are 

used to. Therefore, in order to ease your task, we have already provided the whole code 

structure. You will only modify the main() function as well as some init() and get() 

functions. 

Take some time to read the main() in controller.c. What are the five main steps in the while 

loop, and can you describe a bit their goal? Read the file odometry.h and the lines 36 to 76 in 

controller.c. What do contain the structures simulation_t, measurement_t and pose_t?  

 

Answer:  

1. Perception / Measurement 

The robot must interpret its sensors to extract meaningful data. 

 

2. Localization 

The robot must determine its position in the environment. 

 

3. Cognition / Action 

The robot must decide how to act to achieve its goals (based on previous information). 

 

4. Motor Controls  

The robot must modulate its motor outputs to achieve the desired trajectory. 

 

5. Logging 

This is a necessary step to understand how the variables are evolving with time. 

 

Generally, it is a good practice to store meaningful data inside a structure in C. It might be 

easier to maintain, debug, and understand your code. It is also a good practice to organize 

your code when you start a project: 

- simulation_t: contains the WbDeviceTag objects used in the simulation (sensors, 

actuator, …). 

- measurement_t: contains the measurement obtained by the sensors. 

- pose_t: contains the 2D pose of the robot (i.e. x, y and orientation / heading).  

 

2. (I): At the top of the file controller.c, set VERBOSE_GPS to true, to print the GPS values 

in the terminal. Then, compile your robot controller. 

 

Answer: - 

 

3. (S): Run the simulation. Click on the window of the world (this will let Webots capture your 

keyboard inputs), then use your keyboard to move the robot in the arena. The corresponding 

action and keyboard keys are listed in Table 2. 

 
Table 1: Keyboard keys and corresponding actions  

Keyboard key Simulation actions 
R The robot starts to move 
S The robot stops 
U Increases the speed 
D Decreases the speed 
Up Arrow The robot moves forward 
Down Arrow The robot moves backward 
Left Arrow The robot turns left 
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Right Arrow The robot turns right 
  Hint: You need to press R first for the robot to start moving.  

 

Answer: - 

 

4. (Q): From the values obtained in the terminal, can you deduce in which direction point the GPS 

uses the x, y, and z axes with respect to {World} frame? Can you move the robot to the origin 

of the GPS coordinates (i.e., at least, to reach the point where two of the three values are zeros)? 

Hint: Look at line 195 to see the print command. 

 

Answer: The GPS uses the same convention for the x-, y- and z-axis as the world frame. The 

origin of the GPS frame is in the center of the arena. 

 

5. (I): The GPS does not provide any information about the orientation (heading) of the robot. 

One option is to use the delta position vector (difference between previous GPS values and 

actual ones) and to compute its angle, as can be seen in controller_get_heading(). 

 

Uncomment the indicated lines in the function controller_get_pose() to fill the pose 

structure with the GPS positions and heading. The pose should be written in pose_t structure 

with respect to the reference frame {A}, which coincides with the {Body} frame at the 

beginning of the motion, detailed in Figure 3. 

 

Note: The variable _pose_origin contains the position and orientation of the reference 

frame’s origin A expressed in the world frame (same as GPS values). Its fields are x, y, and 

heading.  

 

Set the VERBOSE_POSE to true and compile. 

 
   Answer: - 

6. (S): Run the simulation by again moving the e-puck robot through the keyboard and try to 

follow the square. Does the pose behave as you expected? If not, try to correct your code. 

 

Answer: - 

 

7. (Q): Is the heading angle still correct when you move your robot backward or rotate it on itself? 

Can you propose a sensor to get the orientation of the robot directly?  

 

Answer:  

If you move your robot backward, the computed heading has a shift of π w.r.t to the real one. 

If your robot rotates on itself, the delta position in the x and y directions becomes really close 

to 0 meters. Therefore, a small error in position can have a large impact on the computed angle. 

You should see a large oscillation of the orientation. 

Alongside the GPS, it is common to add a magnetometer (compass) to measure the bearing 

(heading) of the robot directly.   
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3 Odometry using an accelerometer  

 
8. (S): The controller leveraged in the previous part is again used here. Set VERBOSE_ACC to 

true and compile the robot’s controller. Start the simulation on Webots and do not move the 

robot. You should see the values of the accelerometer in the terminal. Why are those values not 

zero, what do these values mean (e.g., what force is involved)? 

 

Answer: We see the effect of gravity on the accelerometer. This force causes a bias on each 

axis of the accelerometer. To obtain the actual acceleration of the robot, one should remove 

these values. Take note that the effect of gravity on each accelerometer axis changes with the 

robot's actual orientation. 

 

9. (B): We want to focus on a thought experiment for a moment now: Imagine your e-puck is 

falling (no friction with air), and the accelerometer returns zero values for all three axes. With 

regard to the previous question (static conditions), did you expect those values? What is an 

accelerometer really measuring (recall the schematic representation of the accelerometer sensor 

mentioned in the lecture)? 

 

Answer: A really good explanation comes from [1]: 

 

“A typical accelerometer could be modeled as a mass on a spring. The position of the mass, 

when the spring is not compressed or stretched, is defined as zero and corresponds to zero 

reported acceleration. 

 

When the spring is compressed or stretched, the displacement of the mass from its zero position 

is measured (using one of many available techniques) and reported as a positive or negative 

acceleration. 

 

So, what is reported is a displacement of the mass, which may or may not correspond to the 

acceleration of the accelerometer that we would measure externally. 

 

The diagrams below illustrate how it works in x or y directions, where gravity does not play a 

role. 

 
Whenever the body of the accelerometer accelerates, it pushes or pulls the spring, which, in 

turn, pushes or pulls the mass. The force required to accelerate the mass, ma, will cause the 

spring to compress or stretch, and the resulting displacement of the mass will be measured and 

reported as a positive or a negative acceleration. 

 

For the z direction, illustrated in the diagrams below, the dynamics are different. 
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At rest, the spring is compressed or stretched to counter the weight of the ball. 

 

In a free fall, when all parts of the accelerometer experience the same acceleration, the mass 

accelerates due to gravity - not due to the push or the pull of the spring. Therefore, the spring 

does not experience any forces; hence, there is no compression or stretching and no 

displacement, and the reported acceleration is zero. 

 

This description would not be entirely accurate if the resistance of the air were considered. 

Since such resistance would slightly reduce the acceleration of the falling accelerometer, the 

spring would have to compress or stretch a bit to adjust (reduce) the acceleration of the mass 

accordingly.” 

 

10. (S): Uncomment the lines (122 – 127 and 141) in main(). This will force the robot to stay 

static for five seconds. This time is used to estimate the bias of the accelerometer. The resulting 

mean values for the acceleration are stored in the table _meas.acc_mean in the file controller.c. 

Compile the robot controller and start the simulation. Let your robot move forward in the x-

axis direction using the keyboard (press R). Stop it before it reaches the end of the arena (press 

S).  

A file data.csv has been created inside the controller folder. This file contains the simulation 

logs. Run MATLAB code plot_main.m (only part A) to plot the values of the accelerometer. 

What is the frame of the accelerometer? Which indexes of the accelerometer array (acc) 

correspond to the x-, y- and z-axis of frame A (see Figure 2)? 

 

Answer: 

The accelerometer frame is the same as the body frame. 
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11.  (S): Look at the odometry equations leveraging the accelerometer implemented in the 

MATLAB function odo_acc.m and see if they match with the equations you defined in the 

previous question. Use the code plot_main.m (only part B), to plot the odometry. What 

happens if you don’t remove the mean (bias) before the integration? 

 

Answer:  

You should obtain results similar to the following.  

Odometry plot:   

  
 

Replace acc(1)-acc_mean(1) by acc(1) in line 7 of odo_acc.m to omit bias:  

 

 
 

Since the bias is very small in the x direction, both figures are very similar. However, if the bias 

is large, then the odometry quickly diverges if the bias is not removed. Additionally, the 

odometry continues to increase even if the robot stays immobile. The explanation is that the 

odometry error is integrated across time, and the resulting double integration of a constant 

(i.e., odometry error due to accelerometer bias) is a parabola. Finally, one can notice first that 

removing the offset improves the quality of the odometry, and second, the odometry values only 

start to increase when the robot moves. 
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12. (I): Implement your equations for the odometry in Webots, within the function 

odo_compute_acc() of the file odometry.c. Run the simulation and let your robot run in a 

straight line. Analyze the resulting logs in MATLAB using plot_main.m (only part C).  Have 

you obtained results similar to those previously obtained in MATLAB? If not, try to correct 

your code or explain why. 

 

Answer: 

 odo_compute_acc() in odometry.c: 
 
double acc_wx = (acc[0] - acc_mean[0]); 

_odo_speed_acc.x += acc_wx *_T; 

_odo_pose_acc.x += _odo_speed_acc.x * _T; 

 

You should obtain the same results as your MATLAB implementation. 
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4. Odometry using wheel encoders 
 

In this part, we are interested in continuing our investigation with odometry. This time, we propose 

to take advantage of the type of locomotion of the e-puck, a differential wheeled vehicle, to design our 

2D motion model. In fact, the simulated e-puck provides wheel encoders that return information on 

the actual position of its wheels. It is worth noticing that there is a main difference between the real e-

puck and its simulated version. On the one hand, the real e-puck uses stepper motors, characterized by 

1000 steps (increments) per wheel revolution; this type of motor is controlled in an open loop and 

provides information on the wheel position by itself. On the other hand, the simulated e-puck has one 

hinge joint (consider it as the rotating shaft) per wheel, to which a rotational motor and a position 

sensor are attached. The position sensors simulate wheel encoders, a sensing device type that, in reality, 

is combined with DC motors for closed-loop control; they are physically separated from the motors 

but anchored to the rotating shaft to obtain the same increment counting functionality. 

 

13. (S): The same robot controller leveraged in Part 3 is also used for this part. Set VERBOSE_ENC 

to true and compile the robot’s controller. Do a small run in the arena with the e-puck. What is 

the unit used by the wheel encoders, and how do they convert it into meters? Is it an absolute 

or a relative measurement of the wheel position? 

 

Answer:  

Wheel encoders are given in rad.  

We need to multiply the encoder values by the wheel radius. 

The simulated e-puck uses absolute encoders. 

 

14.  (S): Do a complete run around the square with the e-puck. Then, run part D of plot_main.m to 

plot the odometry based on the wheel encoders (note that the odometry is already implemented 

for you in MATLAB).  

Answer: see next question for example results.  

 
15. (S): Look at the way the odometry is implemented in MATLAB in odo_enc.m . Try to reduce 

the deterministic errors by slightly changing the values of the WHEEL_RADIUS and 

WHEEL_AXIS.  Your odometry curves should get closer to those obtained with the GPS. 

 

Answer:  

 

  

2D Odometry based on wheel encoders. Left : Uncalibrated Odometry.  

Right : Calibrated Odometry  

 

16. (I): Implement your equations for the odometry in Webots in the function 

odo_compute_enc() in file odometry.c. Run the simulation and follow the square again. 

Compare the resulting logs on MATLAB using plot_main.m (only part E). As before, you can 

change the values of the WHEEL_RADIUS and WHEEL_AXIS to improve your odometry. 

 

Answer:  

odo_compute_encoders() in odometry.c: 
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//  Rad to meter : Convert the wheel encoder units into meters 
 
Aleft_enc  *= WHEEL_RADIUS; 
 
Aright_enc *= WHEEL_RADIUS; 
 
// Comupute speeds : Compute the forward and the rotational speed 
 
double omega = ( Aright_enc - Aleft_enc ) / ( WHEEL_AXIS * _T ); 
 
double speed = ( Aright_enc + Aleft_enc ) / ( 2.0 * _T ); 
 
//  Compute the speed into the world frame (A)  
 
double speed_wx = speed * cos(_odo_pose_enc.heading); 
 
double speed_wy = speed * sin(_odo_pose_enc.heading); 
 
double omega_w  = omega; 
 
 
// Integration : Euler method 
 
_odo_pose_enc.x += speed_wx * _T; 
 
_odo_pose_enc.y += speed_wy * _T; 
 
_odo_pose_enc.heading += omega_w * _T; 
 

 

 
17. (B): Decrease the speed (press the D key several times) of the motors and let your robot carry 

out a complete tour of the square. Compare the logs on MATLAB code plot_main.m (only part 

E). What are your main observations? 

 

Answer: You should observe more accurate trajectory estimations.  

 

18. (B): Increase the speed (press the U key several times) of the motors and let your robot carry 

out a complete tour of the square. Compare the logs on MATLAB code plot_main.m (only part 

E). What are your main observations? 

 

Answer: You should observe less accurate trajectory estimations.  
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19.  (B): Which strategies could we use to reduce the error in odometry in terms of motor control? 

Think about the unmodeled dynamics of our motion models and when they occur.  

 

Answer: 

From the lecture course, we know that the following five error sources are involved in our case 

of study. We can assume that the three first steps are reduced with proper calibration since they 

are static and deterministic errors.   

1. Limited encoder resolution 

2. Wheel misalignment and small differences in wheel diameter 

3. Integration errors 

4. Variation of the contact point of the wheel 

5. Unequal floor contact (e.g., wheel slip, nonplanar surface) 

The last two ones are not considered in our basic motion model. By comparing Figures 5 and 

6, one can notice the robot underestimates the real value of its orientation while turning on 

itself.  

One partial explanation is that the centripetal acceleration is equal to v2/R, and the resulting 

force pulls the robot out of the desired trajectory. Large forward speed coupled with a low 

rotation radius leads to large centripetal acceleration. This is the reason why when you drive 

a car, it is better to reduce your speed before an abrupt turn if you want to stay on the track. 

Additionally, our motion model is purely kinematic; neither the mass nor the inertia of the robot 

is considered. 

The key message here is the way your robot moves impacts your odometry accuracy. An 

aggressive motion (high acceleration) is likely to result in poor estimation of your robot’s pose. 

The following three points are some possible ways to explore in order to improve your robot’s 

localization. Feel free to implement and test several of them in your course project. 

1. Mind both the robot’s motion and motor controllers 

2. Improve your odometry model 

3. Fuse different data and information (see Lab09) 

 

20. (B): In the recommended reading material for week 9, Chapter 5 of Introduction to Autonomous  

Mobile Robot (2004, R. Siegwart and I. Nourbakhsh) describes another motion model for 

differential-wheeled robots. The equations (5.3 – 5.6) were implemented in MATLAB for you 

in odo_enc_bonus.m. Try to reproduce them in Webots (you can create your function in 

odometry.c to replace the default odo_compute_encoders() function). Does the 

odometry improve when compared to your previous implementation? 
 
Answer:  

In odometry.c :  

- Create a new function odo_compute_encoders_bonus() 

- Add a new variable static pose_t _odo_pose_enc_bonus 

- Reset this new variable in the odo_reset() 

- Add a verbose flag #define VERBOSE_ODO_ENC_BONUS false 

In odometry.h : 

- Add the declaration of odo_compute_encoders_bonus() 

In controller.c : 

- Create a new variable static pose_t _odo_enc_bonus  

- Reset this new variable in the controller_init() 

- Call your new odometry function in main() 

- Modify both function controller_init_log() and controller_print_log() 
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/** 

 * @brief      Compute the odometry using the encoders. Use the motion model 
proposed in bonus question 

 * 

 * @param      odo         The odometry 

 * @param[in]  Aleft_enc   The delta left encoder 

 * @param[in]  Aright_enc  The delta right encoder 

 */ 

void odo_compute_encoders_bonus(pose_t* odo, double Aleft_enc, double 
Aright_enc) 

{ 

 // Rad to meter 

 Aleft_enc  *= WHEEL_RADIUS; 

 Aright_enc *= WHEEL_RADIUS; 

 

 // Compute forward speed and angular speed 

 double omega = ( Aright_enc - Aleft_enc ) / ( WHEEL_AXIS * _T ); 

 double speed = ( Aright_enc + Aleft_enc ) / ( 2.0 * _T ); 

 

 // Apply rotation (Body to World) 

  

 // smaller integration step for the angle (1/2) 

 _odo_pose_enc_bonus.heading += omega * _T / 2.0; 

 double a = _odo_pose_enc_bonus.heading; 

 double speed_wx = speed * cos(a); 

 double speed_wy = speed * sin(a); 

 

 // Integration : Euler method 

 _odo_pose_enc_bonus.x += speed_wx * _T; 

 _odo_pose_enc_bonus.y += speed_wy * _T; 

 

 // smaller integration step for the angle (2/2) 

 _odo_pose_enc_bonus.heading += omega * _T / 2.0; 
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 memcpy(odo, &_odo_pose_enc_bonus, sizeof(pose_t)); 

 if(VERBOSE_ODO_ENC_BONUS) 

     printf("ODO with wheel encoders (Bonus): %g %g %g\n", odo->x , odo-
>y , RAD2DEG(odo->heading) ); 

} 

 

You should observe a slight improvement in terms of performance using this new motion model.  
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