Distributed Intelligent Systems and Algorithms Laboratory EPFL

Lab 6 Solution: Programming and Remote Control of a
DISAL Arduino Xbee Sensor Node

Part 1: Control remote sensor

1. (I): Open the code in partl/basestation and complete the C code to modify the
variable command based on which button is pressed. Depending on which button
is pressed, the user will ask for temperature, humidity, or light data. Specifically:

e IfBTN T is pressed, command=T
e IfBTN H is pressed, command =H
e IfBTN L is pressed, command =L

Solution:
1f (digitalRead (BTN T) == false)
{
command="T";
telse 1f (digitalRead (BTN H) == false)
{

command="H";
}else 1if (digitalRead (BTN L) == false){
command="L";

}

2. (S): Now look at the whole code. Can you explain exactly what is happening?
When is the command for new data sent to the remote sensor? Upload the code to
your board

Solution: In the setup() function, we initialize the various components of the
system. In the loop() function, the code checks if the user is pressing one of the
three buttons and records the user preference on the variable “command”. If the
command changes from the previous iteration (because the user has pressed a
button) the new command is sent to the remote sensor, and it is then saved in a
new variable to keep track of the history of the commands. The last part of the
code checks if there is any data coming from the remote node. If there is, the data
is sent to the computer on the Serial line.

3. (I): Open the code in partl/remotesensor and complete the C code to send back
the remaining two types of data when requested by the receiver. Be careful about
maintaining the format “LETTER DATA” (where letter is L, H, T and data is the
respective data) for all the data you send back. Hint: Use the functions
getHumidity() and getTemperature.

Solution:

if (data=="T"){
float t = getTemperature() ;
Serial3.println("T "+String(t));

AWK, Lab 6: Programming and Remote Control of a DISAL Arduino Xbee Sensor Node

Distributed Intelligent Systems and Algorithms Laboratory EPFL

oled.print (String(t));

Jelse 1if (data=="H"){
float h = getHumidity()
Serial3.println("H "+String(h));
oled.print (String(h));

}Jelse 1f (data=="L"){
Tsl.on();
Tsl.setSensitivity (true, Tsl2561::EXP 14);
delay (16) ;
uint8 t id;
uintlé t full;
Tsl.id(id) ;
Tsl.fullLuminosity (full);
Tsl.off();
Serial3.printin ("L "+String(full));
oled.print (String(full)) ;

}

4. (S): With the boards turned on, run the scripts saveSerialData.py and
cleanData.py located in the python folder, similarly to what you did in the last lab.
Press the buttons while you save the data to collect different types of data.

Solution: Check your implementation

5. (I): Open the plotter.m script contained in the matlab folder. Write MATLAB
code to compute the average, min and max of the three quantities (light, humidity
and temperature) using the data that you saved.

Solution: Sample code to compute the average of light values. Change the value of
the variable type from L to H or T to compute temperature or humidity

type='L";
avg=0;,
counter=0;
max=0; $%we know that no value 1is less than 0 in this
scenario
min= intmax;
for i=1:height(T)
if string(T.Varl (i))==type
avg=avg+T.Var2 (i) ;
counter=counter+1;
%check for max
if T.Var2(i)>max
max=T.Var2 (i) ;
end
%check for min
if T.Var2(i)<min
min=T.Var2 (i) ;
end
end

AWK, Lab 6: Programming and Remote Control of a DISAL Arduino Xbee Sensor Node

Distributed Intelligent Systems and Algorithms Laboratory

EPFL

end

1f counter>0
avg =avg/counter;
else

disp("No value of type "+type),

end

6. (Q): You just worked on a more complex data sharing network. Can you draw a
schematic of the data sharing and the data processing that you just implemented?

Solution:
Wireless link o
o with data _~Receiver: Get ™.
/" Transmitter: ~_ flowingin / patafrom
' GetData+ HbOthd"’ECtlonH Transmitter+
send to / \ send to PC+

. Receiver ask data to

- . transmitter

Part 2: Interrupts

7. (): Go to the folder part2/environmentalmonitoring and look at the code.
Complete the C code to keep track of the number of times the button is pressed.

Solution:

i1f (digitalRead (BTN UP) == false)

{

button press++;

}

8. (S): Test your code by pressing the button closer to the screen. What is

happening? Why?

Solution: The value of the variable button_press is increased only if the button is
pressed when the line of code written for question 17 is executed. This happens
once every 10 seconds. If the button is pressed while other lines of code are

executed, the button press will not be recorded.

9. (I): Write C code to increase the value of the variable “value” in the allocated
space and test your code by opening the serial monitor and pressing the button

closer to the shield’s screen to increase the value of the printed variable. How does

the value increase? Why?

AWK, Lab 6: Programming and Remote Control of a DISAL Arduino Xbee Sensor Node

Distributed Intelligent Systems and Algorithms Laboratory EPFL

Solution:

ISR (PCINTO_Vect)

{

// YOUR CODE HERE /////////////
value++;
SIS S S S S S S S
}

The value increases by 2 for each button press because it increases for every
change in the state of the button (once when the button is pressed, once when it is
released). In fact, the interrupt is “event triggered” and it is called for both
falling and rising edges of the button signal. If you keep the button pressed, you
will see that the value changes by I number.

10. (S): Go back to the code. Do you notice something unusual about the usage of the
function ISR(PCINTO_vect)? Can you guess what is happening?

Solution: This function is not called anywhere in the code. This is because this
function is a special function that is already “known” by the microcontroller.
Because of this, both the name and the arguments of the function cannot be
changed.

11. (I): Go to the folder part2/monitoringwithinterrupts and complete the C code to
increase the value of the variable button_press using an interrupt. Check that your
code is working. When does the number of button presses get updated on the
screen? Why? Does it correspond to the number of times you pressed the button?
If not, can you explain why and can you fix your code to display exactly the
number of times the button was pressed?

Solution:
Add this function
ISR (PCINTO vect)
{
button press++;

}

The number of button presses gets updated once every 10 seconds, but the correct
number of presses (multiplied by two — see solution of question 9) is recorded.
To only display the number of presses, you can modify the print to display half of

the button presses:
oled.print ("Button pressed "+String(button press/2)+"
times") ;

12. (Q): Reflect on the lab so far. How could the code in partl be improved with the
knowledge you have now on interrupts?

Solution: We could attach interrupts to all three buttons in the basestation code to
ensure that all changes requested by the user are recorded. In reality this is not
possible with this board because of some hardware constraints, but it would

AWK, Lab 6: Programming and Remote Control of a DISAL Arduino Xbee Sensor Node

Distributed Intelligent Systems and Algorithms Laboratory EPFL

theoretically be possible with a redesign of the hardware that allows all the
buttons to be attached to an interrupt pin of the microcontroller. Right now only
one of the buttons at a time can be configured as an interrupt.

Part 3: Energy-aware communication

13. (I): Implement the scenario above by detecting when the temperature reaches a
certain stage and changing the value of the frequency of data transmission
accordingly. Do not forget to change the PAN ID on line 44 to the number that
you have used in previous questions. Upload your code on the remote node, then
connect the base station to the computer and open the serial plotter. Test your
implementation by placing a finger on the temperature sensor to increase its
temperature.

Solution:

if (t>28.0){
loop_time=100;

Jelse{
loop_time=1000;

/

IMPORTANT: What to do before handing the board back
to the TAs

Before handing the boards back to a TA, go to the folder maintenance and upload the
code you find inside on both boards. This code reads the battery voltage and prints it
on the OLED screen. This way, we can quickly turn the boards on and see if they need
to be recharged. Thank you for your help!

AWK, Lab 6: Programming and Remote Control of a DISAL Arduino Xbee Sensor Node

