

Lab 3

School of Architecture, Civil and Environmental Engineering

EPFL, SS 2023-2024

http://disal.epfl.ch/teaching/signals_instruments_systems/

Lab 3 outline

- Concept:
 - Responses (Step and impulse response)
 - Continuous-Time Transforms (LT, CTFT)
- Tools:
 - Matlab

Reminder: Symbolic Toolbox in MATLAB

- syms $x, y, z \rightarrow$ Define symbolic variables
- $z = x + y \rightarrow Define functions$
- assume(x>0) \rightarrow Assumption on variables
- sympref('HeavisideAtOrigin',1) → Symbolic preferences
- fplot() \rightarrow Plot symbolic functions
- Heaviside() → Step function
- $tf() \rightarrow Define transfer function$
- step() \rightarrow Plot step response
- int() \rightarrow Symbolic integration

*** Check MATLAB help to learn how to use it

Reminder: Impulse and Step Response

• **Impulse response:** Time evolution of its output when input is impulse function

• **Step response:** Time evolution of its output when input is step function

Reminder: Fourier Transform

$$\hat{f}(\xi) = \int_{-\infty}^{\infty} f(t) \cdot e^{-i2\pi \xi t} dt$$

$$f(t) = \int_{-\infty}^{\infty} \hat{f}(\xi) \cdot e^{i2\pi t \xi} d\xi$$

The Fourier
Transform is a
special case of the
Laplace Transform

fourier() → Symbolic CT Fourier Transform
ifourier() → Symbolic Inverse CT Fourier
Transform

Reminder: Laplace Transform

$$F(s) = \mathcal{L}{f(t)} = \int_{-\infty}^{\infty} e^{-st} f(t) dt$$

 $s = \sigma + i\omega$

*The Laplace
transform is an
extension of Fourier
transform to allow
analysis of broader
class of signals and
systems
*Check transform
tables in appendix

laplace() → Symbolic Laplace Transform
ilaplace() → Symbolic Inverse Laplace
Transform

Reminder: System Analysis with Response and Transforms

Reminder: System Analysis with Response and Transforms

Main ideas behind the quesitons

Question No.	Main Idea
1 (Q)	Finding the step response by using the definition of convolution theoretically
2 (S)	Finding the impulse response from the step response computationally
3 (I)	Finding the step response by using the definition of convolution computationally
4 (I)	Applying Fourier transform to an arbitrary function to observe the frequency content
5 (B)	Finding the step response by using Laplace transform theoretically
6 (I)	Finding the step response by using Laplace transform computationally
7 (I)	Finding the step response by using Matlab's built-in functions

General Remarks

- Check type of questions (Q,S,I,B)***
- Questions for which you need to use Laplace Transform tables are Bonus
- Check MATLAB help to learn how to use functions***
- Check given material, carefully read explanations and templates
- Pay attention to Hints and Notes
- It is about 3h, assistance will be given.

Don't forget

For every login session:

- Start Matlab.
- Run userpath ('/usr/local/MATLAB/R2023a/matlab') from the Command Window.
- Restart Matlab.

Feedback form

Please fill the feedback form for Lab 3!