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Signals, Instruments, and Systems – W5

Introduction to Signal 
Processing – Digital Filters, 
Order and Type of Filters
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Outline 

• Digital filters in time and frequency domains

• FIR and IIR filters

• Filter order and type
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Digital Filters
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Z-Transform

𝑋𝑋(𝑧𝑧) = 𝑍𝑍{𝑥𝑥[𝑛𝑛]} = �
𝑛𝑛=−∞

∞

𝑥𝑥[𝑛𝑛]𝑧𝑧−𝑛𝑛

𝑧𝑧 = 𝐴𝐴𝑒𝑒𝑖𝑖𝜙𝜙 or 𝑧𝑧 = 𝐴𝐴(cos𝜙𝜙 + 𝑖𝑖 sin𝜙𝜙)

Transform in 
the complex z-
plane, see s. 
16, W4 

Translation (time-shifting) property:
See also tables 
Lab 3 

𝑍𝑍{𝑥𝑥 𝑛𝑛 − 𝑛𝑛0 } = 𝑧𝑧−𝑛𝑛0X(z)

Example: 

𝑍𝑍{𝑥𝑥 𝑛𝑛 − 1 } = 𝑧𝑧−1X(z)



5

General Representation
(Causal Filters)

𝑦𝑦 𝑛𝑛 = −�
𝑘𝑘=1

𝑁𝑁

𝑎𝑎𝑘𝑘𝑦𝑦[𝑛𝑛 − 𝑘𝑘] + �
𝑘𝑘=0

𝑀𝑀

𝑏𝑏𝑘𝑘𝑥𝑥[𝑛𝑛 − 𝑘𝑘]

Difference equation:

ℎ[𝑛𝑛] y[𝑛𝑛]𝑥𝑥[𝑛𝑛]

Transfer function:

𝐻𝐻(𝑧𝑧) =
𝑌𝑌(𝑧𝑧)
𝑋𝑋(𝑧𝑧) =

∑𝑘𝑘=0𝑀𝑀 𝑏𝑏𝑘𝑘𝑧𝑧−𝑘𝑘

1 + ∑𝑘𝑘=1𝑁𝑁 𝑎𝑎𝑘𝑘𝑧𝑧−𝑘𝑘
H(𝑧𝑧) Y(𝑧𝑧)X(𝑧𝑧)

𝑌𝑌 𝑧𝑧 + �
𝑘𝑘=1

𝑁𝑁

𝑎𝑎𝑘𝑘𝑌𝑌(𝑧𝑧)𝑧𝑧−𝑘𝑘 = �
𝑘𝑘=0

𝑀𝑀

𝑏𝑏𝑘𝑘𝑋𝑋(𝑧𝑧)𝑧𝑧−𝑘𝑘

Z-transform:

Z-transform 
properties (s. 4)
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An Example
Difference equation:

𝑦𝑦 𝑛𝑛 = 𝑥𝑥 𝑛𝑛 + 2𝑥𝑥 𝑛𝑛 − 1 + 𝑥𝑥 𝑛𝑛 − 2 −
1
4
𝑦𝑦 𝑛𝑛 − 1 +

3
8
𝑦𝑦[𝑛𝑛 − 2]

Transfer function:

𝐻𝐻(𝑧𝑧) =
Y(𝑧𝑧)
𝑋𝑋(𝑧𝑧)

=
1 + 2𝑧𝑧−1 + 𝑧𝑧−2

1 + 1
4 𝑧𝑧

−1 − 3
8 𝑧𝑧

−2
=
𝑧𝑧2 + 2𝑧𝑧 + 1

𝑧𝑧2 + 1
4 𝑧𝑧 −

3
8

=
𝑧𝑧 + 1 2

𝑧𝑧 − 1
2 𝑧𝑧 + 3

4

Note: poles and zeros of H(z) can be represented in the zero-pole plot 
(complex z-plane) for further analysis (e.g., stability).

Z-transform:

𝑌𝑌(𝑧𝑧) + 1
4
𝑌𝑌 𝑧𝑧 𝑧𝑧−1 − 3

8
𝑌𝑌 𝑧𝑧 𝑧𝑧−2 = 𝑋𝑋 𝑧𝑧 + 2𝑋𝑋(𝑧𝑧)𝑧𝑧−1 + 𝑋𝑋(𝑧𝑧)𝑧𝑧−2
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FIR Filters
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Nonrecursive Digital Filters

• ak = 0 for all k
• y n = ∑𝑘𝑘=0𝑀𝑀 𝑏𝑏𝑘𝑘 𝑥𝑥[𝑛𝑛 − 𝑘𝑘]
• Finite Impulse Response (FIR)
• The FIR filter above is a causal system: the 

output depends only on past values of inputs
• The filter coefficients bk define the FIR filter
• The filter order is M, the number of coefficients 

bk is M+1 (filter “length”)
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Examples of FIR Filters

• 3-point moving average:

• 7-point moving average:

𝑦𝑦3 𝑛𝑛 = �
𝑘𝑘=0

2
1
3
𝑥𝑥 𝑛𝑛 − 𝑘𝑘 =

1
3
𝑥𝑥 𝑛𝑛 +

1
3
𝑥𝑥 𝑛𝑛 − 1 +

1
3
𝑥𝑥[𝑛𝑛 − 2]

𝑦𝑦7 𝑛𝑛 = �
𝑘𝑘=0

6
1
7
𝑥𝑥 𝑛𝑛 − 𝑘𝑘 =

1
7
𝑥𝑥 𝑛𝑛 +

1
7
𝑥𝑥 𝑛𝑛 − 1 + ⋯+

1
7
𝑥𝑥[𝑛𝑛 − 6]
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3-pt Moving Average Example

[Picture from McClellan, Schafer, and Yoder, “DSP First: A Multimedia Approach”] 

Smooth sharp transitions
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7-pt Moving Average Example

[Picture from McClellan, Schafer, and Yoder, “DSP First: A Multimedia Approach”] 

More smoothing of sharp transitions



12

Impulse Response of a 
Discrete-Time LTI System

Discrete-
Time 

LTI System
ℎ[𝑛𝑛]𝛿𝛿[𝑛𝑛]

ℎ[𝑛𝑛] 𝑓𝑓 ∗ ℎ 𝑛𝑛 = �
𝑚𝑚=−∞

∞

𝑓𝑓 𝑚𝑚 ℎ[𝑛𝑛 −𝑚𝑚]𝑓𝑓[𝑛𝑛]

From W3, s. 14-15
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The Unit Impulse

1

n

𝛿𝛿[𝑛𝑛] = �
1 𝑛𝑛 = 0
0 𝑛𝑛 ≠ 0

[Picture from McClellan, Schafer, and Yoder, “DSP First: A Multimedia Approach”] 

Notation:
Kronecker delta function
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Time-Shifted Unit Impulse

𝛿𝛿[𝑛𝑛 − 𝑛𝑛0] = �
1 𝑛𝑛 = 𝑛𝑛0
0 𝑛𝑛 ≠ 𝑛𝑛0

[Picture from McClellan, Schafer, and Yoder, “DSP First: A Multimedia Approach”] 

Example: n0= 3
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Impulse Response of a FIR Filter

𝑦𝑦 𝑛𝑛 = �
𝑘𝑘=0

𝑀𝑀

𝑏𝑏𝑘𝑘𝑥𝑥 𝑛𝑛 − 𝑘𝑘
A FIR filter usually described in 
terms of coefficients bk

Alternatively, as any other LTI system,  we can describe a 
FIR filter using its impulse response.

If 𝑥𝑥 𝑛𝑛 = 𝛿𝛿 𝑛𝑛 then y 𝑛𝑛 = ℎ 𝑛𝑛 , i. e. the impulse response

ℎ 𝑛𝑛 = �
𝑘𝑘=0

𝑀𝑀

𝑏𝑏𝑘𝑘𝛿𝛿 𝑛𝑛 − 𝑘𝑘⟹
Note: you can check 
𝑥𝑥 ∗ ℎ 𝑛𝑛 = y[n]
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Impulse Response of a FIR Filter

ℎ 𝑛𝑛 = �
𝑘𝑘=0

𝑀𝑀

𝑏𝑏𝑘𝑘𝛿𝛿 𝑛𝑛 − 𝑘𝑘

[Table from McClellan, Schafer, and Yoder, “DSP First: A Multimedia Approach”] 

Impulse response 
is finite!
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Example of FIR Filter:
Noncausal 3-Point Moving Average

• 𝑏𝑏𝑘𝑘 = {1
3

, 1
3
, 1
3
} for k= -1,0,1

• y n = 1
3

(𝑥𝑥 𝑛𝑛 − 1 + 𝑥𝑥 𝑛𝑛 +𝑥𝑥 𝑛𝑛 + 1 )

• h n = 1
3

(𝛿𝛿 𝑛𝑛 − 1 + 𝛿𝛿 𝑛𝑛 + 𝛿𝛿 𝑛𝑛 + 1 )

[Picture from Prof. A. S. Willsky, Signals 
and Systems course]

Difference equation

Impulse response

Filter coefficients
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• 𝑏𝑏𝑘𝑘 = {1
2

,−1
2
} for k= 0,1

• y n = 1
2

(𝑥𝑥 𝑛𝑛 − 𝑥𝑥 𝑛𝑛 − 1 )

• h n = 1
2

(𝛿𝛿 𝑛𝑛 − 𝛿𝛿 𝑛𝑛 − 1 )

Example of FIR Filter:
Causal High-Pass Filter 

[Picture from Prof. A. S. Willsky, Signals 
and Systems course]

Difference equation

Impulse response

Filter coefficients
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IIR Filters
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Motivation

[Picture from McClellan, Schafer, and Yoder, “DSP First: A Multimedia Approach”] 

Can we remove the blur in postprocessing?
Yes! With a deconvolution filter! 
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Motivation

[Adapted from McClellan, Schafer, and Yoder, “DSP First: A Multimedia Approach”] 

s[n] x[n]ℎ1[𝑛𝑛] y[n]ℎ2[𝑛𝑛]

𝑥𝑥 𝑛𝑛 = 𝑠𝑠 𝑛𝑛 ∗ ℎ1 𝑛𝑛
𝑦𝑦[𝑛𝑛] = 𝑥𝑥[𝑛𝑛] ∗ ℎ2[𝑛𝑛] = 𝑠𝑠[𝑛𝑛] ∗ ℎ1[𝑛𝑛] ∗ ℎ2[𝑛𝑛]
⇒ ℎ1[𝑛𝑛] ∗ ℎ2[𝑛𝑛] = 𝛿𝛿[𝑛𝑛] (convolution with unit impulse ↔ identity) 

Given h1[n], can we find h2[n] so that y[n] = s[n]?

Conv Deconv
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Motivation

𝑥𝑥[𝑛𝑛] = 𝑠𝑠[𝑛𝑛] − 𝑎𝑎𝑠𝑠[𝑛𝑛 − 1] ⇒ ℎ1[𝑛𝑛] = 𝛿𝛿[𝑛𝑛] − 𝑎𝑎𝛿𝛿[𝑛𝑛 − 1]

[Adapted from McClellan, Schafer, and Yoder, “DSP First: A Multimedia Approach”] 

Blurring filter with parameter a: 

Difficult to solve in time domain within convolution sum. 

Z-domain:  

S(z) X(z)𝐻𝐻1(𝑧𝑧) 𝐻𝐻2(𝑧𝑧)
Y(z)

𝑌𝑌 𝑧𝑧 = 𝐻𝐻2 𝑧𝑧 𝐻𝐻1 𝑧𝑧 𝑆𝑆 𝑧𝑧 = 𝐻𝐻 𝑧𝑧 𝑆𝑆(𝑧𝑧)
𝐻𝐻(𝑧𝑧) = 1 = 𝐻𝐻2(𝑧𝑧)𝐻𝐻1(𝑧𝑧)
⇒ 𝐻𝐻2(𝑧𝑧) = 1/𝐻𝐻1(𝑧𝑧)

Blurring filter  in z-domain (from DE above): 𝐻𝐻1 𝑧𝑧 = 1 − 𝑎𝑎𝑧𝑧−1

⇒ 𝐻𝐻2 (𝑧𝑧) =
1

1 − 𝑎𝑎𝑧𝑧−1
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Motivation

𝐻𝐻2(𝑧𝑧) =
1

1 − 𝑎𝑎𝑧𝑧−1
What type of filter?

𝐻𝐻2 𝑧𝑧 =
𝑌𝑌 𝑧𝑧
𝑋𝑋 𝑧𝑧

=
1

1 − 𝑎𝑎𝑧𝑧−1

𝑌𝑌 𝑧𝑧 = 𝑎𝑎𝑌𝑌 𝑧𝑧 𝑧𝑧−1 + 𝑋𝑋 𝑧𝑧

𝑦𝑦 𝑛𝑛 = 𝑎𝑎𝑦𝑦 𝑛𝑛 − 1 + 𝑥𝑥[𝑛𝑛] If a ≠ 0 not a FIR (see s. 8)! 

In fact 𝐻𝐻2 is a first order IIR filter! 
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Recursive Digital Filters
• y n = −∑𝑘𝑘=1𝑁𝑁 𝑎𝑎𝑘𝑘 𝑦𝑦 𝑛𝑛 − 𝑘𝑘 + ∑𝑘𝑘=0𝑀𝑀 𝑏𝑏𝑘𝑘 𝑥𝑥[𝑛𝑛 − 𝑘𝑘]
• ak≠ 0 and bk≠ 0 at least for one k
• 𝑎𝑎𝑘𝑘: feedback coefficients
• 𝑏𝑏𝑘𝑘: feed-forward coefficients
• Infinite Impulse Response (IIR)
• The IIR filter above is a causal system: the output 

depends only on past values of output and input
• The filter order is typically N and the total 

number of coefficients is N+M+1
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Impulse Response of a IIR Filter

𝑦𝑦[𝑛𝑛] = 𝑎𝑎1𝑦𝑦[𝑛𝑛 − 1] + 𝑏𝑏0𝑥𝑥[𝑛𝑛] ⇒ ℎ[𝑛𝑛] = 𝑎𝑎1ℎ[𝑛𝑛 − 1] + 𝑏𝑏0𝛿𝛿[𝑛𝑛]

Example: generalized first order IIR filter:

Impulse response 
is infinite!
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Frequency Response of 
Digital Filters 
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Motivation
• Typical configuration when digital filtering is applied to 

analog signals: 

• Frequency response useful when input x[n] = sum of 
sinusoids, then output y[n] also sum of sinusoids

• Focus on the spectrum

Digital FilterADC DAC
x(t) x[n] y[n] y(t)
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Frequency Response
• Bode plots have been defined for continuous-time 

systems (e.g., analog filters) 
• With z = 𝑒𝑒𝑖𝑖𝜔𝜔 (see W4, s. 20), the Z-transform degrades 

to a DTFT (as the Laplace transform was degrading to 
the FT with s = 𝑖𝑖𝜔𝜔)

• We can therefore calculate the frequency response of the 
corresponding discrete-time system (e.g., a digital filter) 
with the transfer function 𝐻𝐻(𝑒𝑒𝑖𝑖𝜔𝜔)

• A FFT is then typically used to calculate numerically the 
frequency response on computers

• Matlab has a dedicated function for this: freqz
Note: response in normalized angular frequency 
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Order and Types of Filters
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Filter Order and Type

• Several filters exist in both analog and digital 
form and are defined by the polynomials at the 
numerator/denominator (Bessel, Butterworth, 
Tschebishev, etc.)

• 1st order is equivalent to 20dB per decade
• Each successive order adds 20dB per decade
• Filter with a high order are closer to the ideal 

filter (rectangular function)
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Filter Order
Analog

Filter order: 3
++  faster cutoff
-- more components
-- higher power 

consumption

Filter order: 0

Filter order: 1

Filter order: 2

++  faster cutoff
-- more computation
-- higher power

consumption

Digital





𝑦𝑦 𝑛𝑛 = 𝑏𝑏0𝑥𝑥 𝑛𝑛

𝑦𝑦 𝑛𝑛 = 𝑏𝑏0𝑥𝑥 𝑛𝑛 + 𝑏𝑏1𝑥𝑥 𝑛𝑛 − 1

𝑦𝑦 𝑛𝑛 = 𝑏𝑏0𝑥𝑥 𝑛𝑛 + 𝑏𝑏1𝑥𝑥 𝑛𝑛 − 1 + 𝑏𝑏2𝑥𝑥 𝑛𝑛 − 2





32

Conclusion
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Take Home Messages
• Both analog and digital filters are: 

– characterized by different order and coefficient distributions
– they can be expressed in time and (complex) frequency domains 

• Programmable digital components (e.g., microcontrollers, 
DSPs) allow for easy encoding of digital filters 

• Several equivalent forms to define digital filters are possible:
– Coefficient set (time domain)
– Difference equation (time domain)
– Impulse response (time domain)
– Transfer function (frequency domain)

• An important differentiation for digital filters can be based 
on the impulse response which can be finite (filter non 
recursive) or infinite (filter recursive); FIR and IIR filters are 
correspondingly defined
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Books
• J. H. McClellan, R. W. Schafer, M. A. Yoder

“DSP First: A Multimedia Approach”, Prentice 
Hall, 1999.

• A. Oppenheim and A. S. Willsky with S. Nawab, 
“Signals and Systems”, Prentice Hall, 1997.

Additional Literature – Week 5


	Slide Number 1
	Outline 
	Slide Number 3
	Z-Transform
	General Representation�(Causal Filters)
	An Example
	Slide Number 7
	Nonrecursive Digital Filters
	Examples of FIR Filters
	3-pt Moving Average Example
	7-pt Moving Average Example
	Impulse Response of a Discrete-Time LTI System
	The Unit Impulse
	Time-Shifted Unit Impulse
	Impulse Response of a FIR Filter
	Impulse Response of a FIR Filter
	Example of FIR Filter:�Noncausal 3-Point Moving Average
	Slide Number 18
	Slide Number 19
	Motivation
	Motivation
	Slide Number 22
	Slide Number 23
	Recursive Digital Filters
	Impulse Response of a IIR Filter
	Slide Number 26
	Motivation
	Frequency Response
	Slide Number 29
	Filter Order and Type
	Filter Order
	Slide Number 32
	Take Home Messages
	Slide Number 34

