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Signals, Instruments, and Systems - W5

Introduction to Signal
Processing — Digital Filters,
Order and Type of Filters
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Outline

* Digital filters in time and frequency domains
* FIR and IIR filters

 Filter order and type
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/-Transtorm
X(z) = Z{x|n]} = Z x[n)z™"

n=—0co

z = Ae'® or z = A(cos ¢ + isin ¢)

Translation (time-shifting) property:

Z{x|n —ny|} = z7X(z)

Example:

Z{x[n — 1]} = z7X(2)
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Transform in
the complex z-
plane, see s.

16, W4

See also tables
Lab 3




=PFL

General Representation

(Causal Filters)

Difference equation:
N M
ylnl = = ) ayln—kl+ ) bex[n— k)
k=1 k=0

Z-transform:
N

M
Y(z) + Z a,Y(2)z™F = z b X(z)z™F
k=0

k=1

Transfer function:
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x[n]— h[n] [— yln]

Z-transform
properties (s. 4)

X(z)—{H@)[— Y(2)
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An Example

Difference equation:

y[n] = x[n] + 2x[n — 1] + x[n — 2] —%y[n — 1]+ %y[n — 2]

Z-transform:

Y(2) + % Y(z)z71 — EY(Z)Z_Z =X(2)+2X(2)z '+ X(2)z™*

Transfer function:

H(Z) Y(z) 1+2z71'4+2z7% z2+42z+1 (z+ 1)?
Z) = = = =
X(2) 1+%z‘1—%z‘2 Zz+%Z—% (z—%)(z+%)

Note: poles and zeros of H(z) can be represented in the zero-pole plot
(complex z-plane) for further analysis (e.g., stability).
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Nonrecursive Digital Filters

e 3, = 0 forallk
e y[n] = Xy—o bi x[n — k]
* Finite Impulse Response (FIR)

* The FIR filter above 1s a causal system: the
output depends only on past values of inputs

 The filter coeftficients b, define the FIR filter

* The filter order 1s M, the number of coefficients
b, 1s M+1 (filter “length”™)
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Examples of FIR Filters

* 3-point moving average:

il — ]+1x[n—1]+1x[n—2]
P 3 3 3

* 7-point moving average:

26:1 — ]+1x[n—1]+---+lx[n—6]
P 7 7 7
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3-pt Moving Average Example &

Input Signal: x[n] = (1.02)" + cos(2n/8 + n/4) for 0 = n < 40

3 I I | I I I I I
ol
| ®e =1
7 L . ot ' | L o—" |
e o 9
-5 0 5 10 15 20 25 30 35 40 45 50
Output of 3-Point Running-Average Filter
3 I I I I I I I
‘i..y
Smooth sharp transitions '
2T T d » et '_:_....._..---"':"""' . a
%o *1?
A sl _
-5 0 5 10 15 20 25 30 35 40 45 50

[Picture from McClellan, Schafer, and Yoder, “DSP First: A Multimedia Approach’]
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7-pt Moving Average Example &

Input Signal: x[n] = (1.02)" + cos(2wn/8 + w/4) for 0 = n =40

3 I I I I I I I I
]
o ¢ ] ? —-.
7 L o . L P _-___‘___,.—-.""'" _
ot o ®
3| T AT _
0 seeee TTT IT essesbeseee
-5 0 5 10 15 20 25 30 35 40 45 50
Output of 7-Point Running-Average Filter
3 I I I I I I
5 | T More smoothing of sharp transitions — |

;quTﬂ NTTM

-5 0 5 10 15 20 25 30 35 40 45 50
Index n

[Picture from McClellan, Schafer, and Yoder, “DSP First: A Multimedia Approach’]
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Impulse Response of a
Discrete-Time LTI System

Discrete-
Time
LTI System
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From W3, s. 14-15
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The Unit Impulse

5[n] = 1 n=0 Notation: |
0 n=+0 Kronecker delta function

.1

[Picture from McClellan, Schafer, and Yoder, “DSP First: A Multimedia Approach’]
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Time-Shifted Unit Impulse
1 —

o[n —np) = m T
0 n#ng
Example: n,=3 A Sin -3
I ¢
& & L & ¢ & & & & @ _
4 -3 -2 -1 0 1 2 3 4 5 6 7 n

[Picture from McClellan, Schafer, and Yoder, “DSP First: A Multimedia Approach’]
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Impulse Response of a FIR Filter
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M
B A FIR filter usually described in
yln| = z bx|n — k| terms of coefficients b,
k=0

Alternatively, as any other LTI system, we can describe a
FIR filter using its impulse response.

If x|n] = 6[n] then y|n] = h[n],i. e. the impulse response

M Note: heck
= | h[n] = z bi6|n — kj (xo*ehig’lll] Cinyc[rjC
k=0
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Impulse Response of a FIR Filter

M
hin| = b, 6|n — k]
; .
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n n<0|0 |1 2 M | M+1  n>M+1
x[n] = o|n] 0 110 |0 0 0 0
}-’[J"i] — h[n] 0 b() bl bz ?M 0 0
Impulse response
1s finite!

[Table from McClellan, Schafer, and Yoder, “DSP First: A Multimedia Approach”]
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Noncausal 3-Point Moving Average
* by = {g; %; %} for k=-1,0,1 Filter coefficients
e y[n] = %(x In — 1] + x|n]+x|n + 1]) Difference equation
e h|n| = %(5[71 — 1]+ §[n]+ 6 [n + 1)) Impulse response
0.05 . [Picture from Prof. A. S. Willsky, Signals
and Systems course]




EPFL Example of FIR Filter: ~
. . )
Causal High-Pass Filter oisat
e b = {% , — %} for k=10,1 Filter coefficients
o [n] _1 (x [n] — x[n — 1]) Difference equation
e hin] == (5 In] —6 [n—1)) Impulse response
Zj [Picture from Prof. A. S. Willsky, Signals

ol . 4 . | and Systems course]
-1 -5 5 1
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Motivation

Qriginal lmage Blurred (Motion)

Can we remove the blur 1n postprocessing?
Yes! With a deconvolution filter!

[Picture from McClellan, Schafer, and Yoder, “DSP First: A Multimedia Approach’]
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Motivation ),

Criginal lmage Blurred (hotion) Festored wy Inverse Filter

s[n] hy[n] x[n] . h,[n] yin] .
Conv Deconv

Given h,|n], can we find h,|n] so that y[n| = s[n]?

x[n] = s[n] * hy[n]
y[n] = x[n] * hy[n] = s[n] * hy[n] * hz[n]
= hq|n] * h,[n] = 6|n] (convolution with unit impulse <> identity)

[Adapted from McClellan, Schafer, and Yoder, “DSP First: A Multimedia Approach”]
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Motivation

Blurring filter with parameter a:
x[n] = s[n] —as[n—1] = h{[n] = é[n] — ad[n — 1]
Difficult to solve in time domain within convolution sum.

7Z-domain:

S(z) X(z)

Y
—— H®) =

H,(z)

Y(z) = Hy(2)H,(2)S(z) = H(2)S(2)
H(z) =1 = H,(z)H,(z)
= Hy(z) = 1/H,(2)

Blurring filter in z-domain (from DE above): H;(z) =1 —az™!

=> H, (z) =

1—az™1
[Adapted from McClellan, Schafer, and Yoder, “DSP First: A Multimedia Approach”]
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1
H,(z) = rp— What type of filter?

Y(z) 1
X(z) 1—az!

H,(z) =
Y(z) =aY(2)z" ! + X(2)
yln] = ay|n — 1] + x[n] Ifa#0notaFIR (sees. &)!

In fact H, 1s a first order IIR filter!
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Recursive Digital Filters

o y[n] = —¥_1 ax y[n — k] + Xi'=o by x[n — K]

a,# 0 and b, # 0 at least for one k
a: feedback coefficients

b, : feed-forward coefficients
Infinite Impulse Response (IIR)

The IIR filter above 1s a causal system: the output
depends only on past values of output and input

The filter order 1s typically N and the total
number of coefficients 1s N+M+1
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Impulse Response of a IIR Filter

Example: generalized first order IIR filter:

y[n] = ayy[n — 1] + byx[n] = h[n] = a;h|[n — 1] + by [n]

\S

ISa

n n<»o0 0 1 2 3 4
5[] E 0 0 0 0
hin —1] 0 0 by bo(ar) | bo(a)® | bolar)?

hin] 0 bo | bolar) | bola))* | bola))® | bolay)*

Impulse response
is infinite!

1
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Frequency Response of
Digital Filters
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Motivation

» Typical configuration when digital filtering is applied to
analog signals:

X(t X[n] y[n] t
AN PR | Digital Filter {pac YO,

* Frequency response useful when input x[n] = sum of
sinusoids, then output y[n] also sum of sinusoids

* Focus on the spectrum
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Frequency Response

* Bode plots have been defined for continuous-time
systems (e.g., analog filters)

e Withz = e'? (see W4, s. 20), the Z-transform degrades
to a DTFT (as the Laplace transform was degrading to
the FT with s = iw)

* We can therefore calculate the frequency response of the
corresponding discrete-time system (e.g., a digital filter)
with the transfer function H(e'®)

* A FFT 1s then typically used to calculate numerically the
frequency response on computers

* Matlab has a dedicated function for this: freqz

Note: response in normalized angular frequency



=PFL

Order and Types of Filters
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Filter Order and Type

» Several filters exist in both analog and digital
form and are defined by the polynomials at the
numerator/denominator (Bessel, Butterworth,
Tschebishev, etc.)

* Istorder 1s equivalent to 20dB per decade
» Each successive order adds 20dB per decade

 Filter with a high order are closer to the 1deal
filter (rectangular function)
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Filter order: 3
++ faster cutoff

more components
higher power
consumption

++ faster cutoff
-- more computation
-- higher power

Digital
y[n] = box|n. Filter order: 0 |
y[n] = box[n] + byx[n — 1] Filter order: 1
yln] = box[n] + byx[n — 1] + bx[n — 2]  Filter order: 2 _

consumption
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Take Home Messages

* Both analog and digital filters are:
— characterized by different order and coefficient distributions
— they can be expressed in time and (complex) frequency domains

* Programmable digital components (e.g., microcontrollers,
DSPs) allow for easy encoding of digital filters

* Several equivalent forms to define digital filters are possible:
— Coefficient set (time domain)
— Difference equation (time domain)
— Impulse response (time domain)
— Transfer function (frequency domain)

* An important differentiation for digital filters can be based
on the impulse response which can be finite (filter non
recursive) or infinite (filter recursive); FIR and IIR filters are
correspondingly defined
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Books

e J. H. McClellan, R. W. Schafer, M. A. Yoder
“DSP First: A Multimedia Approach™, Prentice
Hall, 1999.

* A. Oppenheim and A. S. Willsky with S. Nawab,
“Signals and Systems”, Prentice Hall, 1997.
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