# LINE FOLLOWING AND LOCALIZATION

Signals, Instruments and Systems
Course Project



## INTRODUCTION

#### Main Goals

Line following

Obstacles avoidance

Localization - Odometry

Feature-based localization

Webots: C programming

Matlab

#### Main Set-Up





## **METHODS**

## **SENSORS**

- Exteroceptive sensors :
- Camera
- Proximity IR sensors (8 sensors)
- → line following and obstacle avoidance
  - Propioceptive sensors :
  - Step counters
  - Wheel encoders





## **ALGORITHM**

#### 1. Check if obstacle nearby

→ obstacles avoidance loop actioned

#### 2. Check if line not detected

→ find if end of line or discontinuity using the camera

#### 3. Line following mode

→ using the camera



## **FUNCTIONS**

#### **Principal Functions**

- 1. Line Following
- 2. Braitenberg: obstacles avoidance
- 3. Odometry: estimation of position
- 4. Feature Update + Kalman : improve estimation of position

#### **Auxiliary Functions**

- Read camera image → get colors and gray levels
- Adjust the e-puck's trajectory + make the e-puck turn around and stop

## LINE FOLLOWING











## BRAITENBERG

#### (similar to lab)

- Use of the proximity IR sensors values
  - → compute the speeds to avoid the obstacles

$$speed_{left} = \sum_{i=0}^{n} \alpha_{left,i} \left(1 - \frac{ps\_value_i}{ps\_range}\right)$$

$$speed_{right} = \sum_{i=0}^{n} \alpha_{right,i} \left(1 - \frac{ps\_value_i}{ps\_range}\right)$$

| Braitenberg's coefficients | (weights) for obstacle avoidance |
|----------------------------|----------------------------------|
|----------------------------|----------------------------------|

| Sensor      | 0   | 1    | 2   | 3    | 4    | 5   | 6    | 7   |
|-------------|-----|------|-----|------|------|-----|------|-----|
| Left wheel  | 150 | 250  | -25 | -100 | 50   | 20  | -125 | -75 |
| Right wheel | -75 | -125 | 20  | 50   | -100 | -25 | 250  | 150 |

Camera sees colored obstacle → Braitenberg

## LOCALIZATION - ODOMETRY

#### Frames - Notations

Relative frame

e-puck

# Absolute frame

#### Model

 $\xi_I(T)$ 

$$\xi_{I}(T) = \xi_{I_0} + \int_{0}^{T} \dot{\xi}_{I} dt = \xi_{I_0} + \int_{0}^{T} R^{-1}(\theta) \dot{\xi}_{R} dt$$

Pose in the absolute frame =  $(Xw, Yw, \theta w)$  Pose in the relative frame =  $(x, y, \theta)$ 

Initiale absolute pose : (-0.25, 0.10,  $\pi$ )

Initiale pose

Absolute pose after a time T

Relative speed

Absolute speed

## LOCALIZATION - ODOMETRY

Angular deviation of the wheels [Rad]

Multiplication by WHEEL\_RADIUS [m]

Computation of the relative angular speed omega\_speed\_0

Computation of the relative forward speed forward\_speed\_x

Transposition of speeds from relative to absolute frame

#### Euler method

```
Xw = forward_speed_Xw * delta_t
Yw = forward_speed_Yw * delta_t
θ = omega_speed_θw * delta_t
```

## FEATURE UPDATE

- Calculate position of e-puck using the objects
- Principle:
- function IR\_to\_distance computes the distance to the obstacle

using informations on objects and an interpolation → get estimated position

| Re              |           | ed         | I Green   |            | Blue      |            | Yellow    |            |
|-----------------|-----------|------------|-----------|------------|-----------|------------|-----------|------------|
| Distance<br>[m] | IR<br>[-] | std<br>[-] | IR<br>[-] | std<br>[-] | IR<br>[-] | std<br>[-] | IR<br>[-] | std<br>[-] |
| 0.08            | 30        | 23         | -         | -          | -         | -          | -         | -          |
| 0.07            | 33        | 28         | -         | -          | -         | -          | 29        | 21         |
| 0.06            | 66        | 28         | -         | -          | -         | -          | 51        | 24         |
| 0.05            | 109       | 28         | -         | -          | -         | -          | 84        | 25         |
| 0.04            | 212       | 40         | 27        | 23         | 30        | 23         | 156       | 23         |
| 0.03            | 452       | 54         | 49        | 25         | 40        | 26         | 305       | 31         |
| 0.02            | 1379      | 117        | 163       | 32         | 142       | 36         | 761       | 74         |
| 0.01            | 3096      | 211        | 969       | 133        | 690       | 84         | 2335      | 176        |

| Obstacles | Position of center (x, z) [m] | Standard deviation of uncertainty in x [m] | Standard deviation of uncertainty in z [m] | Size (x,z)<br>[m] |
|-----------|-------------------------------|--------------------------------------------|--------------------------------------------|-------------------|
| Green     | -0.25, -0.1                   | 0.005                                      | 0.005                                      | 0.2, 0.02         |
| Blue      | -0.25, -0.08                  | 0.01                                       | 0.01                                       | 0.2, 0.02         |
| Red       | 0.22,0.08                     | 0.005                                      | 0.005                                      | 0.2, 0.02         |
| Yellow    | 0.22, 0.1                     | 0.02                                       | 0.02                                       | 0.2, 0.02         |

## KALMAN FILTER

Inputs 
$$\mu_{t-1}$$
,  $\Sigma_{t-1}$ ,  $u_t$ ,  $z_t$ 

#### **Prediction**

$$\overline{\underline{\mu}}_{t} = A_{t} \mu_{t-1} + B_{t} \mu_{t}$$

$$\overline{\underline{\Sigma}}_{t} = A_{t} \Sigma_{t-1} A_{t}^{T} + R_{t}$$

Outputs  $\mu_t, \Sigma_t$ 

#### **Correction or update**

$$K_{t} = \overline{\Sigma}_{t} C_{t}^{T} (C_{t} \overline{\Sigma}_{t} C_{t}^{T} + Q_{t})^{-1}$$

$$\mu_{t} = \overline{\mu}_{t} + K_{t} (z_{t} - C_{t} \overline{\mu}_{t})$$

$$\Sigma_{t} = (I - K_{t} C_{t}) \overline{\Sigma}_{t}$$

## **RESULTS**

## SIMULATION VIDEO



## SUCCESS RATE

A simulation is considered successful if the e-puck accomplishes all the tasks.

| RandomSeed | Success Rate |
|------------|--------------|
| 0          | 100 %        |
| -1         | 60 %         |

#### **Problematic areas**

- green obstacle
- line discontinuity

## **METRICS**





Units = [m]

Metric evolution or Error evolution

## **METRICS**

#### **Average Metrics**

| Navigation metric | Time metric | Localization metric |
|-------------------|-------------|---------------------|
| 0.0588            | 219.248     | 1.689               |

Units for navigation and localization = [m]

Units for time metric = [s]

## **ODOMETRY RESULT**



#### Localization uncertainties

#### **Deterministic errors**:

Reduced by changes in

- WHEEL\_RADIUS
- WHEEL\_AXIS

#### Non-deterministic errors

#### Use of odometry model:

- Cumulative pose error
- Incrementally increase

## POSITION ESTIMATION USING FEATURES

Using the feature\_update function

| object seen | x error | y error |
|-------------|---------|---------|
| yellow      | 0.0512  | 0.0695  |
| blue        | 0.0726  | 0.0403  |
| green       | 0.103   | 0.117   |
| red         | 0.0804  | 0.0604  |

(results over one successful simulation : values did not change much between simulations)

## KALMAN RESULT

#### Slightly better pose estimation



Solution to reduce remaining error = Filter IR-values to better approximate the distance



## CONCLUSION

## CONCLUSION

- E-puck performs complete task most of the time
- Improvements:
  - Adjust the code to reduce sensitivity to noise
  - Completely implement Kalman → better odometry
  - Make the simulation work in other worlds