
Signals, Instruments, and Systems – W6

C Programming Refresher
Advanced topics

1

Outline

▪ Compiled vs interpreted languages

▪ Compilation

▪ Pointers

▪ Memory management

▪ Debugging with gdb

2

Compiled vs interpreted

languages
Compiled Language

Code is directly translated (through a

compiler) into binary that can be

executed by the machine.

✓ Direct access machine resources

(memory, processes)

✓ More efficient

✓ Faster

Examples: C, C++

Interpreted Language

Need for a running engine (e.g., JVM

for Java codes) to be translated to

binary (usually at run-time).

✓ Usually platform independent

✓ Easier to code

✓ High-level control of resources

Examples: Java, Python, Matlab

3

Main differences between C and

Matlab

• Matlab is an interpreted language

• Matlab is optimized for matrix operations

• Syntax differences (loops, functions, etc…)

• No variable declarations

4

Object Oriented Languages

• Object Oriented programming = data is

grouped into “objects” that can have

properties and/or methods (functions)

• C is NOT an object-oriented language, C++

is

5

Compilation

main

source file executable

(binary)

?
main.c

int main() {

int a = 5;

double b = 4.3;

return a * b;

}

10100101010010

10100101001010

10010100101001

00010101001111

00100101010100

gcc main.c –o main

6

The C Compiler Pipeline

Source File

main.o

main.c

Header Files

#include

C

Preprocessor

C Compiler

common.h

stdio.h

Object File

libc.so

Linker

module.o

Object Files Library Files

main

Executable File

7

“.h” vs. “.c”

• Usually header files (“.h” files) should

contain all the necessary functions,

structures, typedef and enum declarations

such that another programmer can use your

code without having to look at your c file.

• C files contain the actual implementation

and “hidden” declarations.

8

Libraries

• Libraries provide special functionality in the form of collections

of ready-made functions:

Library: Example:

stdio.h printf(const char* format,…)

math.h sqrt(double x)

time.h gettimeofday()

stdlib.h rand()

Usage:

#include <stdlib.h>

#include “my_library.h” :your own collection of function declarations
9

Compilation process

https://www3.ntu.edu.sg/home/ehchua/programming/cpp/gcc_make.html
10

program

Compilation Example
Main source file

main.omain.c

libc

standard C library

gcc help.o file.o main.c –o program -lm

file.ofile.c

gcc –c help.c –o help.o

help.ohelp.c

libm

math library
gcc –c file.c –o file.o

Complementary file

Complementary file

1

2

3

11

Makefile: Example

CC = gcc

LDLIBS = -lm

all: program

program: main.o help.o file.o

clean:

rm –rf *.o program

- compiler

- additional library

- targets

- label

- [TAB] !!
[TAB]rm –rf *.o main

Note: Run make clean all for a totally new compilation
12

Warning

• Build commands explained here are for Unix-like

systems (i.e. Ubuntu, MacOS* etc.)

• For Windows, different commands are utilized

• All will be explained in labs/guidelines

13

Tool to be used

Ubuntu MacOS Windows

Compiler gcc gcc (Clang) gcc (Mingw-w64)

Debugger gdb lldb gdb (Mingw-w64)

IDE
Geany,

Webots

Geany,

Webots

Geany,

Webots

14

You need to review:

• Variables and constants (types, sign, global, local etc.)

• Operators (arithmetic, unary, bitwise etc.)

• Controlling execution flow (if, switch, while, do-while, for

etc.)

• Standard libraries (stdin, stdout etc.)

• Functions

• Arrays, structure, strings, type definitions

• Preprocessor commands

https://coursc.ch/

15

https://coursc.ch/

Argument passing in C

▪ Reminder:

Arguments are always passed by value in C

function calls! This means that local copies of the

values of the arguments are passed to the routines!

#include <stdio.h>

void exchange(int a, int b) {

int tmp = a;

a = b;

b = tmp;

printf("Exchange: a = %d, b = %d\n", a, b);

}

int main() {

int a = 5;

int b = 7;

exchange(a, b);

printf("Main: a = %d, b = %d\n", a, b);

return 0;

}

computer:~> ./exchange

computer:~> Exchange: a = 7, b = 5

computer:~> Main: a = 5, b = 7

16

What happens?

#include <stdio.h>

void exchange(int a, int b) {

int tmp = a;

a = b;

b = tmp;

printf("Exchange: a = %d, b = %d\n", a, b);

}

int main() {

int a = 5;

int b = 7;

exchange(a,b);

printf("Main: a = %d, b = %d\n", a, b);

return 0;

}

Computer memory

computer:~> ./exchange

Output:

17

What happens?

#include <stdio.h>

void exchange(int a, int b) {

int tmp = a;

a = b;

b = tmp;

printf("Exchange: a = %d, b = %d\n", a, b);

}

int main() {

int a = 5;

int b = 7;

exchange(a,b);

printf("Main: a = %d, b = %d\n", a, b);

return 0;

}

a = 5

Computer memory

computer:~> ./exchange

Output:

17

What happens?

#include <stdio.h>

void exchange(int a, int b) {

int tmp = a;

a = b;

b = tmp;

printf("Exchange: a = %d, b = %d\n", a, b);

}

int main() {

int a = 5;

int b = 7;

exchange(a,b);

printf("Main: a = %d, b = %d\n", a, b);

return 0;

}

b = 7

a = 5

Computer memory

computer:~> ./exchange

Output:

17

exchange

memory area

What happens?

#include <stdio.h>

void exchange(int a, int b) {

int tmp = a;

a = b;

b = tmp;

printf("Exchange: a = %d, b = %d\n", a, b);

}

int main() {

int a = 5;

int b = 7;

exchange(a,b);

printf("Main: a = %d, b = %d\n", a, b);

return 0;

}

b = 7

a = 5

Computer memory

computer:~> ./exchange

Output:

17

exchange

memory area

What happens?

#include <stdio.h>

void exchange(int a, int b) {

int tmp = a;

a = b;

b = tmp;

printf("Exchange: a = %d, b = %d\n", a, b);

}

int main() {

int a = 5;

int b = 7;

exchange(a,b);

printf("Main: a = %d, b = %d\n", a, b);

return 0;

}

b = 7

a = 5

b = 7

a = 5

copied arguments

Computer memory

computer:~> ./exchange

Output:

17

exchange

memory area

What happens?

#include <stdio.h>

void exchange(int a, int b) {

int tmp = a;

a = b;

b = tmp;

printf("Exchange: a = %d, b = %d\n", a, b);

}

int main() {

int a = 5;

int b = 7;

exchange(a,b);

printf("Main: a = %d, b = %d\n", a, b);

return 0;

}

b = 7

a = 5

copied arguments

tmp = 5

Computer memory

computer:~> ./exchange

Output:

17

exchange

memory area

What happens?

#include <stdio.h>

void exchange(int a, int b) {

int tmp = a;

a = b;

b = tmp;

printf("Exchange: a = %d, b = %d\n", a, b);

}

int main() {

int a = 5;

int b = 7;

exchange(a,b);

printf("Main: a = %d, b = %d\n", a, b);

return 0;

}

b = 7

copied arguments

tmp = 5

Computer memory

a = 7

computer:~> ./exchange

Output:

17

exchange

memory area

What happens?

#include <stdio.h>

void exchange(int a, int b) {

int tmp = a;

a = b;

b = tmp;

printf("Exchange: a = %d, b = %d\n", a, b);

}

int main() {

int a = 5;

int b = 7;

exchange(a,b);

printf("Main: a = %d, b = %d\n", a, b);

return 0;

}

copied arguments

tmp = 5

Computer memory

a = 7

b = 5

computer:~> ./exchange

Output:

17

exchange

memory area

What happens?

#include <stdio.h>

void exchange(int a, int b) {

int tmp = a;

a = b;

b = tmp;

printf("Exchange: a = %d, b = %d\n", a, b);

}

int main() {

int a = 5;

int b = 7;

exchange(a,b);

printf("Main: a = %d, b = %d\n", a, b);

return 0;

}

copied arguments

tmp = 5

Computer memory

a = 7

b = 5

computer:~> Exchange: a = 7, b = 5

computer:~> ./exchange

Output:

17

What happens?

#include <stdio.h>

void exchange(int a, int b) {

int tmp = a;

a = b;

b = tmp;

printf("Exchange: a = %d, b = %d\n", a, b);

}

int main() {

int a = 5;

int b = 7;

exchange(a,b);

printf("Main: a = %d, b = %d\n", a, b);

return 0;

}

Computer memory

computer:~> Exchange: a = 7, b = 5

computer:~> ./exchange

Output:

17

What happens?

#include <stdio.h>

void exchange(int a, int b) {

int tmp = a;

a = b;

b = tmp;

printf("Exchange: a = %d, b = %d\n", a, b);

}

int main() {

int a = 5;

int b = 7;

exchange(a,b);

printf("Main: a = %d, b = %d\n", a, b);

return 0;

}

b = 7

a = 5

Computer memory

computer:~> Exchange: a = 7, b = 5

computer:~> ./exchange

computer:~> Main: a = 5, b = 7

Output:

17

Pointers

int i;

int* pi;

18

Pointers

int i;

int* pi;

int *pi;
=

18

Pointers

float f;

float* pf;

float *pf;
=

19

Pointers

Address Content

5460 a = 5

5464 b = 7

5468 pa = 5460

21

Pointers

int a = 5;
Address Content

5460 a = 5

5464 b = 7

5468 pa = 5460

21

Pointers

int a = 5;
Address Content

5460 a = 5

5464 b = 7

5468 pa = 5460

21

Pointers

int a = 5;
Address Content

5460 a = 5

5464 b = 7

5468 pa = 5460

int b = 7;

21

Pointers

int a = 5;
Address Content

5460 a = 5

5464 b = 7

5468 pa = 5460

int b = 7;

21

Pointers

int a = 5;
Address Content

5460 a = 5

5464 b = 7

5468 pa = 5460
int* pa;

int b = 7;

21

Pointers

int a = 5;
Address Content

5460 a = 5

5464 b = 7

5468 pa = 5460
int* pa = &a;

int b = 7;

21

Pointers

int a = 5;
Address Content

5460 a = 5

5464 b = 7

5468 pa = 5460
int* pa = &a;

address-of operator

int b = 7;

21

Pointers

int a = 5;
Address Content

5460 a = 5

5464 b = 7

5468 pa = 5460
int* pa = &a;

address-of operator

int b = 7;

21

Pointers

Address Content

5460 a = 5

5464 b = 7

5468 pa = 5460

22

Pointers

pa = &b;
Address Content

5460 a = 5

5464 b = 7

5468 pa = 5460

22

Pointers

pa = &b;
Address Content

5460 a = 5

5464 b = 7

5468 pa = 5464

22

Pointers

pa = &b;
Address Content

5460 a = 5

5464 b = 7

5468 pa = 5464

*pa = 42;

22

Pointers

pa = &b;
Address Content

5460 a = 5

5464 b = 7

5468 pa = 5464

*pa = 42;

indirection operator

22

Pointers

pa = &b;

*pa = 42;

Address Content

5460 a = 5

5464 b = 42

5468 pa = 5464
indirection operator

22

Pointers

pa = &b;

*pa = 42;

Address Content

5460 a = 5

5464 b = 42

5468 pa = 5464
a = *pa;

22

Pointers

pa = &b;

*pa = 42;

a = *pa;

Address Content

5460 a = 42

5464 b = 42

5468 pa = 5464

22

Anti-confusion tips

• Which one to choose ? &var, var, or *var ?

1. ‘&var’ can never come before an ‘=‘

2. Look for the type:
float i;

float *p;

p = &i;

*p = 2.4;

23

Anti-confusion tips

• Which one to choose ? &var, var, or *var ?

1. ‘&var’ can never come before an ‘=‘

2. Look for the type:
float i;

float *p;

p = &i;

*p = 2.4;

– p is a pointer to float, *p is a float.

23

Anti-confusion tips

• Which one to choose ? &var, var, or *var ?

1. ‘&var’ can never come before an ‘=‘

2. Look for the type:
float i;

float *p;

p = &i;

*p = 2.4;

– p is a pointer to float, *p is a float.

23

Anti-confusion tips

• Which one to choose ? &var, var, or *var ?

1. ‘&var’ can never come before an ‘=‘

2. Look for the type:
float i;

float *p;

p = &i;

*p = 2.4;

– p is a pointer to float, *p is a float.

23

Argument passing in C

▪ Arguments are always passed by value in C

function calls! This means that local copies of the

values of the arguments are passed to the routines!

#include <stdio.h>

void exchange(int a, int b) {

int tmp = a;

a = b;

b = tmp;

printf("Exchange: a = %d, b = %d\n", a, b);

}

int main() {

int a = 5;

int b = 7;

exchange(a, b);

printf("Main: a = %d, b = %d\n", a, b);

return 0;

}

computer:~> ./exchange

computer:~> Exchange: a = 7, b = 5

computer:~> Main: a = 5, b = 7

24

How to solve the problem?

#include <stdio.h>

void exchange(int* pa, int* pb) {

int tmp = *pa;

*pa = *pb;

*pb = tmp;

printf("Exchange: a = %d, b = %d\n", *pa, *pb);

}

int main() {

int a = 5;

int b = 7;

exchange(&a, &b);

printf("Main: a = %d, b = %d\n", a, b);

return 0;

}

computer:~> ./exchange

computer:~> Exchange: a = 7, b = 5

computer:~> Main: a = 7, b = 5

▪ By using pointers, i.e. variables that contain the

address of another variable!

int* pa and int* pb are pointers!

Output:

25

#include <stdio.h>

void exchange(int *pa, int *pb) {

int tmp = *pa;

*pa = *pb;

*pb = tmp;

printf("Exchange: a = %d, b = %d\n", *pa, *pb);

}

int main() {

int a = 5;

int b = 7;

exchange(&a,&b);

printf(“Main: a = %d, b = %d\n", a, b);

return 0;

}

What happens now?

Computer memory

computer:~> ./exchange

Addresses

Output:

4

8

12

16

20

24

28

0

26

#include <stdio.h>

void exchange(int *pa, int *pb) {

int tmp = *pa;

*pa = *pb;

*pb = tmp;

printf("Exchange: a = %d, b = %d\n", *pa, *pb);

}

int main() {

int a = 5;

int b = 7;

exchange(&a,&b);

printf(“Main: a = %d, b = %d\n", a, b);

return 0;

}

What happens now?

a = 5

Computer memory

computer:~> ./exchange

Addresses

Output:

4

8

12

16

20

24

28

0

26

#include <stdio.h>

void exchange(int *pa, int *pb) {

int tmp = *pa;

*pa = *pb;

*pb = tmp;

printf("Exchange: a = %d, b = %d\n", *pa, *pb);

}

int main() {

int a = 5;

int b = 7;

exchange(&a,&b);

printf(“Main: a = %d, b = %d\n", a, b);

return 0;

}

What happens now?

b = 7

a = 5

Computer memory

computer:~> ./exchange

Addresses

Output:

4

8

12

16

20

24

28

0

26

#include <stdio.h>

void exchange(int *pa, int *pb) {

int tmp = *pa;

*pa = *pb;

*pb = tmp;

printf("Exchange: a = %d, b = %d\n", *pa, *pb);

}

int main() {

int a = 5;

int b = 7;

exchange(&a,&b);

printf(“Main: a = %d, b = %d\n", a, b);

return 0;

}

exchange

memory area

What happens now?

b = 7

a = 5

Computer memory

computer:~> ./exchange

Addresses

Output:

4

8

12

16

20

24

28

0

26

#include <stdio.h>

void exchange(int *pa, int *pb) {

int tmp = *pa;

*pa = *pb;

*pb = tmp;

printf("Exchange: a = %d, b = %d\n", *pa, *pb);

}

int main() {

int a = 5;

int b = 7;

exchange(&a,&b);

printf(“Main: a = %d, b = %d\n", a, b);

return 0;

}

exchange

memory area

What happens now?

b = 7

a = 5

pb = 8

pa = 4

copied arguments

Computer memory

computer:~> ./exchange

Addresses

Output:

4

8

12

16

20

24

28

0

26

#include <stdio.h>

void exchange(int *pa, int *pb) {

int tmp = *pa;

*pa = *pb;

*pb = tmp;

printf("Exchange: a = %d, b = %d\n", *pa, *pb);

}

int main() {

int a = 5;

int b = 7;

exchange(&a,&b);

printf(“Main: a = %d, b = %d\n", a, b);

return 0;

}

exchange

memory area

What happens now?

pb = 8

pa = 4

tmp = 5

Computer memory

computer:~> ./exchange

Addresses

Output:

4

8

12

16

20

24

28

0

26

#include <stdio.h>

void exchange(int *pa, int *pb) {

int tmp = *pa;

*pa = *pb;

*pb = tmp;

printf("Exchange: a = %d, b = %d\n", *pa, *pb);

}

int main() {

int a = 5;

int b = 7;

exchange(&a,&b);

printf(“Main: a = %d, b = %d\n", a, b);

return 0;

}

exchange

memory area

What happens now?

pb = 8

pa = 4

tmp = 5

Computer memory

computer:~> ./exchange

Addresses

Output:

4

8

12

16

20

24

28

0

26

#include <stdio.h>

void exchange(int *pa, int *pb) {

int tmp = *pa;

*pa = *pb;

*pb = tmp;

printf("Exchange: a = %d, b = %d\n", *pa, *pb);

}

int main() {

int a = 5;

int b = 7;

exchange(&a,&b);

printf(“Main: a = %d, b = %d\n", a, b);

return 0;

}

exchange

memory area

What happens now?

pb = 8

pa = 4

tmp = 5

Computer memory

computer:~> ./exchange

Addresses

Output:

4

8

12

16

20

24

28

0

26

#include <stdio.h>

void exchange(int *pa, int *pb) {

int tmp = *pa;

*pa = *pb;

*pb = tmp;

printf("Exchange: a = %d, b = %d\n", *pa, *pb);

}

int main() {

int a = 5;

int b = 7;

exchange(&a,&b);

printf(“Main: a = %d, b = %d\n", a, b);

return 0;

}

exchange

memory area

What happens now?

pb = 8

pa = 4

tmp = 5

Computer memory

computer:~> Exchange: a = 7, b = 5

computer:~> ./exchange

Addresses

Output:

4

8

12

16

20

24

28

0

26

#include <stdio.h>

void exchange(int *pa, int *pb) {

int tmp = *pa;

*pa = *pb;

*pb = tmp;

printf("Exchange: a = %d, b = %d\n", *pa, *pb);

}

int main() {

int a = 5;

int b = 7;

exchange(&a,&b);

printf(“Main: a = %d, b = %d\n", a, b);

return 0;

}

What happens now?

Computer memory

computer:~> Exchange: a = 7, b = 5

computer:~> ./exchange

Addresses

Output:

4

8

12

16

20

24

28

0

26

#include <stdio.h>

void exchange(int *pa, int *pb) {

int tmp = *pa;

*pa = *pb;

*pb = tmp;

printf("Exchange: a = %d, b = %d\n", *pa, *pb);

}

int main() {

int a = 5;

int b = 7;

exchange(&a,&b);

printf(“Main: a = %d, b = %d\n", a, b);

return 0;

}

What happens now?

Computer memory

computer:~> Exchange: a = 7, b = 5

computer:~> ./exchange

computer:~> Main: a = 7, b = 5

a = 7

b = 5

Addresses

Output:

4

8

12

16

20

24

28

0

26

Arrays
▪ Arrays and pointers are closely related.

▪ v points to the first element of the array

Computer memory

float v[3];

v[0] = 1.3;

v[1] = 4.5;

v[2] = 5.2; 1.3

4.5

5.2

▪ v is the same as &(v[0])

▪ v[0] is the same as *(v+0)

▪ v[1] is the same as *(v+1)

Type Address Value

v float* 4 8

v[1] float v+1=12 4.5

4

8

12

16

20

24

28

0

8 v

v[0]

v[1]

v[2]

27

Passing an array to a function

#include <stdio.h>

#define SIZE 3

void g(int* array_p, int const size) {

int i;

for (i = 0; i < size; ++i) {

array_p[i] = 2 * (i+1);

}

}

int main(void) {

int i;

int array[SIZE] = {0, 0, 0} ;

g(array, SIZE);

for (i = 0; i < SIZE; ++i) {

printf(“%d:%d ", i, array[i]);

}

return 0;

}
computer:~> gcc –o array2fun array2fun.c

computer:~> ./array2funcomputer:~> 0:2

1:4 2:6

▪ The two variables array_p and

array are not the same

(array_p is a pointer to the first

element of array)!

▪ For the purpose of modifying the

array from the function g(),

array_p acts the same as array

▪ Here is the output of the program:

28

Strings
▪ There is no string type in C. Instead, we use arrays of char,

i.e. the type char*.

Computer memory

char str[] = “hello”;
h

▪ You can use the printf to print out chains of characters. It

will read up to the character ‘\0’.

Type Address Value

str char* 2

str[4] char str+4 ‘o’

str[2] char str+2 ‘l’

e

l

l

o

\0

printf(“%s”,str); computer:~> hello

printf(“%s”,str+3); computer:~> lo

1

2

3

4

5

6

7

0

8

9

29

Memory: a more realistic approach

▪ In a real computer, memory is organized into blocks

of 8 bits, called bytes.

▪ On most modern computers, each byte has its own

address.

▪ Memory is limited, not only in terms of the number

of RAM modules that are installed, but also in terms

of the number of addresses available.

▪ Furthermore, a program is not allowed to use (read

and/or write) all bytes: some are reserved by the

operating system. If you try to access them (using a

pointer), your program will crash (segmentation fault

or bus error).

8-bit computer memory

8 bits

10011010

11101001

10011010

11101001
10011010

11101001

10011010

11101001

11001010

1

2

3

4

5

6

7

0

8

30

Memory: a more realistic approach

▪ In a real computer, memory is organized into blocks

of 8 bits, called bytes.

▪ On most modern computers, each byte has its own

address.

▪ Memory is limited, not only in terms of the number

of RAM modules that are installed, but also in terms

of the number of addresses available.

▪ Furthermore, a program is not allowed to use (read

and/or write) all bytes: some are reserved by the

operating system. If you try to access them (using a

pointer), your program will crash (segmentation fault

or bus error).

8-bit computer memory

8 bits

10011010

11101001

10011010

11101001
10011010

11101001

10011010

11101001

11001010

int *p = 1;

*p = 0;

segmentation fault (trying to

write at address 1)

1

2

3

4

5

6

7

0

8

30

The size of the data types

▪ Each data type requires a certain number of bytes to be stored

in memory, and this size can change as a function of the

operating system (Windows, Linux, etc.) and the architecture

of the system.

▪ The function sizeof(type) returns the size of the data

type (in bytes).

printf("%d",sizeof(char)); /* prints 1 */

printf("%d",sizeof(short)); /* prints 2 */

printf("%d",sizeof(int)); /* prints 4 */

printf("%d",sizeof(long)); /* prints 4 */

printf("%d",sizeof(float)); /* prints 4 */

printf("%d",sizeof(double)); /* prints 8 */

31

The size of pointers

▪ Reminder: a pointer is a variable that contains the address

of another variable.

▪ Therefore, the size of any pointer is constant, regardless of

the data type that it points to (since it contains only the

address of the variable, which does not depend on its type,

obviously).

printf("%d",sizeof(char*)); /* prints 4 */

printf("%d",sizeof(short*)); /* prints 4 */

printf("%d",sizeof(int*)); /* prints 4 */

printf("%d",sizeof(long*)); /* prints 4 */

printf("%d",sizeof(float*)); /* prints 4 */

printf("%d",sizeof(double*)); /* prints 4 */

On a 32-bit computer
32

The size of pointers

▪ Reminder: a pointer is a variable that contains the address

of another variable.

▪ Therefore, the size of any pointer is constant, regardless of

the data type that it points to (since it contains only the

address of the variable, which does not depend on its type,

obviously).

printf("%d",sizeof(char*)); /* prints 8 */

printf("%d",sizeof(short*)); /* prints 8 */

printf("%d",sizeof(int*)); /* prints 8 */

printf("%d",sizeof(long*)); /* prints 8 */

printf("%d",sizeof(float*)); /* prints 8 */

printf("%d",sizeof(double*)); /* prints 8 */

On a 64-bit computer
32

A (tortuous) pointer example

#include <stdio.h>

int main() {

int i = 10;

int** p1;

int* p2;

p1 = &p2;

*p1 = &i;

*p2 /= 2;

printf("i = %d\n", i);

return 0;

}

Computer memory

4

8

12

16

20

24

28

0

computer:~> ./pointers

Output:

33

A (tortuous) pointer example

#include <stdio.h>

int main() {

int i = 10;

int** p1;

int* p2;

p1 = &p2;

*p1 = &i;

*p2 /= 2;

printf("i = %d\n", i);

return 0;

}

Computer memory

4

8

12

16

20

24

28

0

p2 = ?

p1 = ?

i = 10

computer:~> ./pointers

Output:

33

A (tortuous) pointer example

#include <stdio.h>

int main() {

int i = 10;

int** p1;

int* p2;

p1 = &p2;

*p1 = &i;

*p2 /= 2;

printf("i = %d\n", i);

return 0;

}

Computer memory

4

8

12

16

20

24

28

0

p2 = ?

i = 10

p1 = 24

computer:~> ./pointers

Output:

33

A (tortuous) pointer example

#include <stdio.h>

int main() {

int i = 10;

int** p1;

int* p2;

p1 = &p2;

*p1 = &i;

*p2 /= 2;

printf("i = %d\n", i);

return 0;

}

Computer memory

4

8

12

16

20

24

28

0

i = 10

p1 = 24

p2 = 4

computer:~> ./pointers

Output:

33

A (tortuous) pointer example

#include <stdio.h>

int main() {

int i = 10;

int** p1;

int* p2;

p1 = &p2;

*p1 = &i;

*p2 /= 2;

printf("i = %d\n", i);

return 0;

}

Computer memory

4

8

12

16

20

24

28

0

i = 10

p1 = 24

p2 = 4

computer:~> ./pointers

Output:

33

A (tortuous) pointer example

#include <stdio.h>

int main() {

int i = 10;

int** p1;

int* p2;

p1 = &p2;

*p1 = &i;

*p2 /= 2;

printf("i = %d\n", i);

return 0;

}

Computer memory

4

8

12

16

20

24

28

0

p1 = 24

p2 = 4

i = 5

computer:~> ./pointers

Output:

33

A (tortuous) pointer example

#include <stdio.h>

int main() {

int i = 10;

int** p1;

int* p2;

p1 = &p2;

*p1 = &i;

*p2 /= 2;

printf("i = %d\n", i);

return 0;

}

Computer memory

4

8

12

16

20

24

28

0

p1 = 24

p2 = 4

i = 5

computer:~> ./pointers

Output:

33

A (tortuous) pointer example

#include <stdio.h>

int main() {

int i = 10;

int** p1;

int* p2;

p1 = &p2;

*p1 = &i;

*p2 /= 2;

printf("i = %d\n", i);

return 0;

}

Computer memory

4

8

12

16

20

24

28

0

p1 = 24

p2 = 4

i = 5

computer:~> i = 5

computer:~> ./pointers

Output:

33

Dynamic allocation of memory

▪ MATLAB automatically grows matrices as you continue to

add more elements

▪ These data structures are dynamical because they grow

automatically in memory as you add data to them.

▪ In C, you cannot do that without managing memory yourself.

int signal[50];

signal[0] = 0;

signal[1] = 4;

signal[2] = 5;

signal[3] = 4;

signal[4] = 3;

...

▪ In this code sample, for instance, the

array signal can contain 50 integers

and you cannot make it grow further.

▪ In many cases, you do not know at

compile time the size of your data

structure. In such cases, you need to

allocate memory dynamically!

This value has to

be a constant!

34

Dynamic allocation of memory

▪ To allocate a certain amount of memory, you can use the function

malloc(size), where size is the number of bytes of memory

requested (which does not have to be constant).

▪ malloc returns a pointer to the first byte of memory which has

been allocated.

▪ As a result, the static array declaration int signal[50]

becomes, in its dynamic version:

int* signal = malloc(50 * sizeof(int));

signal[0] = 0;

signal[1] = 4;

signal[2] = 5;

signal[3] = 4;

signal[4] = 3;

...

This value does not have

to be a constant!

35

Freeing the memory

▪ If you allocated some memory dynamically, the compiler will not

take care of freeing the allocated block of memory when you no

longer need it.

▪ Use the function free(void *ptr) to make the block

available to be allocated again.

▪ If you perform a malloc without its free counterpart, you will

create a memory leak.

▪ Therefore, write a free for each malloc you write.

▪ After you free memory, you can no longer access it.

int* signal = malloc(50 * sizeof(int));

// ...

free(signal);

36

Dynamically allocating memory

#include <stdlib.h>

#define MAX_SIZE 1000000

int main() {

int i;

int *v; // a vector

// create a vector of size i

for (i = 1; i < MAX_SIZE; ++i) {

v = malloc(i*sizeof(int));

// do something with vector v

}

return 0;

}

▪ Each iteration of the loop, an

increasingly larger chunk of

memory is allocated with

malloc

▪ These chunks are never freed,

and the program allocates a

total of 2,000 GB of memory

before terminating!

37

Dynamically allocating memory

#include <stdlib.h>

#define MAX_SIZE 1000000

int main() {

int i;

int *v; // a vector

// create a vector of size i

for (i = 1; i < MAX_SIZE; ++i) {

v = malloc(i*sizeof(int));

// do something with vector v

free(v); // free memory

}

return 0;

}

▪ Each iteration of the loop, an

increasingly larger chunk of

memory is allocated with

malloc

▪ These chunks are never freed,

and the program allocates a

total of 2,000 GB of memory

before terminating!

▪ Calling free inside the loop

means that we never allocate

more than 4 MB at a time

38

Beyond this lecture

▪ What you learned today are the basics of memory management, i.e.,

what you need to know as a C programmer.

▪ There are further subtleties, which we do not expect you to

understand in depth, but it is worth knowing that they exist:

▪ the ordering of individually addressable units (words, bytes, or even bits)

within a longer data word (endianness) might differ from platform to platform

▪ memory is actually divided into two parts: (i) the stack, on which variables

that are declared at compile time are stored in order of decreasing address;

(ii) the heap, on which variables that are dynamically allocated are stored.

▪ there are further types of memory, which you cannot access in C without

resourcing to assembler instructions: (i) the registers, which are located inside

the processor, are extremely fast, but very limited (a few hundreds of bytes);

(ii) the cache, which is a fast, but small memory (a few megabytes), and is

used by the processor to perform “caching” (i.e., pre-fetching and storing

chunks of data that are likely to be used or re-used soon).

▪ Most of these details are platform-dependent (and therefore

mostly handled by the compiler)
39

Debugging with gdb

40

A (tortuous) pointer example

#include <stdio.h>

int main() {

int i = 10;

int** p1;

int* p2;

p1 = &p2;

*p1 = &i;

*p2 /= 2;

return 0;

}
What is the value of i?

What about now?

41

Debugging

▪ Debuggers allow you to step through and examine the effects

of your code as it executes

▪ Many IDEs have a visual debugger built in, but in this class

we will use gdb, which operates from the command line

▪ gdb has tons of features, but we only need to know a few for

it to be an extremely powerful tool

$ gcc –g –o pointers pointers.c

$ gdb ./pointers

(gdb) start

42

Basic commands

▪ Start your program by typing start at the

gdb prompt

▪ Your program will execute until it reaches a

"breakpoint". A breakpoint is automatically

inserted at the first line of your main function.

▪ Breakpoints are added with "break
filename.c:<line>"

▪ Execution can be resumed with "continue"

43

Debugging example

(gdb)

44

Debugging example

(gdb) start

45

Debugging example

(gdb) start
Temporary breakpoint 1, main () at pointers.c:4
4 int i = 10;
(gdb)

46

Debugging example

(gdb) start
Temporary breakpoint 1, main () at pointers.c:4
4 int i = 10;
(gdb) break pointers.c:10

47

Debugging example

(gdb) start
Temporary breakpoint 1, main () at pointers.c:4
4 int i = 10;
(gdb) break pointers.c:10
Breakpoint 2 at 0x4011b8: file pointers.c, line 10.
(gdb)

48

Debugging example

(gdb) start
Temporary breakpoint 1, main () at pointers.c:4
4 int i = 10;
(gdb) break pointers.c:10
Breakpoint 2 at 0x4011b8: file pointers.c, line 10.
(gdb) continue

49

Debugging example

(gdb) start
Temporary breakpoint 1, main () at pointers.c:4
4 int i = 10;
(gdb) break pointers.c:10
Breakpoint 2 at 0x4011b8: file pointers.c, line 10.
(gdb) continue
Continuing.
Breakpoint 2, main () at pointers.c:10
10 *(&p2[1]-1) /= 2;
(gdb)

50

Inspecting variables

▪ To inspect the values of different variables,

use the "print" command

Breakpoint 2, main () at pointers.c:10
10 *(&p2[1]-1) /= 2;
(gdb)

51

Inspecting variables

▪ To inspect the values of different variables,

use the "print" command

Breakpoint 2, main () at pointers.c:10
10 *(&p2[1]-1) /= 2;
(gdb) print &i

52

Inspecting variables

▪ To inspect the values of different variables,

use the "print" command

Breakpoint 2, main () at pointers.c:10
10 *(&p2[1]-1) /= 2;
(gdb) print &i
$1 = (int *) 0x28abf8
(gdb)

53

Inspecting variables

▪ To inspect the values of different variables,

use the "print" command

Breakpoint 2, main () at pointers.c:10
10 *(&p2[1]-1) /= 2;
(gdb) print &i
$1 = (int *) 0x28abf8
(gdb) print &p2[1]-1

54

Inspecting variables

▪ To inspect the values of different variables,

use the "print" command

Breakpoint 2, main () at pointers.c:10
10 *(&p2[1]-1) /= 2;
(gdb) print &i
$1 = (int *) 0x28abf8
(gdb) print &p2[1]-1
$2 = (int *) 0x28abf8

55

Step by step navigation

▪ Setting a breakpoint on every line of a function

would be very tedious!

▪ Use the step and next commands to navigate

through your code one line at a time

▪ step will enter function calls

▪ next will skip them

int main() {
myfunction(a);
printf("a = %d\n", a);

return 0;
}

void myfunction(int a) {
// perform calculations

}

56

Step by step navigation

▪ Setting a breakpoint on every line of a function

would be very tedious!

▪ Use the step and next commands to navigate

through your code one line at a time

▪ step will enter function calls

▪ next will skip them

int main() {
myfunction(a);
printf("a = %d\n", a);

return 0;
}

void myfunction(int a) {
// perform calculations

}

57

Step by step navigation

▪ Setting a breakpoint on every line of a function

would be very tedious!

▪ Use the step and next commands to navigate

through your code one line at a time

▪ step will enter function calls

▪ next will skip them

int main() {
myfunction(a);
printf("a = %d\n", a);

return 0;
}

void myfunction(int a) {
// perform calculations

}

58

Step by step navigation

▪ Setting a breakpoint on every line of a function

would be very tedious!

▪ Use the step and next commands to navigate

through your code one line at a time

▪ step will enter function calls

▪ next will skip them

int main() {
myfunction(a);
printf("a = %d\n", a);

return 0;
}

void myfunction(int a) {
// perform calculations

}

59

Step by step navigation

▪ Setting a breakpoint on every line of a function

would be very tedious!

▪ Use the step and next commands to navigate

through your code one line at a time

▪ step will enter function calls

▪ next will skip them

int main() {
myfunction(a);
printf("a = %d\n", a);

return 0;
}

void myfunction(int a) {
// perform calculations

}

60

Conclusion

61

Take-home messages
▪ A pointer is a variable that contains the address of another

variable.

▪ An array is not a pointer, but acts like one in most cases!

Arrays simply address a sequence of values.

▪ Memory can be either statically (at compile time) or

dynamically (at run time) allocated:

▪ Static allocation does not require manual deallocation.

▪ Dynamic allocation requires manual deallocation (using free).

▪ Recall that computer memory has multiple layers of

complexity, even though we do not expect you to know them

in details.

▪ Debugging with printf is still okay, but a debugger like gdb

can be more useful in many situations, there is also “valgrind”

for memory management.
62

Additional Literature – Week 6

ISBN-13: 978-0672326660

Programming in C

Stephen G. Koch

C Programming Language

Brian W. Kernighan,

Dennis M. Ritchie

ISBN-13: 978-0131103627

Popular C link

http://www.c-faq.com

63

