Simulation of line following and obstacle avoidance using a miniature robot

Théo Boutros
Héloïse Sandoz
(Group 6)
Introduction and goals

- Line following and detection for different types of lines (black oval, black and blue S-shaped, black square, thinner black U-shaped)
- Obstacle avoidance (long and short cuboid obstacles + wall)
- Odometry

→ Design of the code through trial and error with a focus on handling curvy lines (oval and S-shaped) that are black and of a certain width.
Structure of the code

- Series of if, else if and else statements
- At each timestep:

 1) Braitenberg avoidance (proximity sensors)

 1) a) Execution of a specific *manoeuvre*
 b) Line following (camera)
 - 4 types of adjustment by side (including 1 *manoeuvre*)
 - Uturn *manoeuvre*
 c) Line detection (camera)
 - 2 types of approach *manoeuvres* by side
 d) Obstacle avoidance
Line following and detection

Gray levels of a selection of chosen pixels on the images given by the camera are used to design conditions that allow to discriminate different tasks that the robot should perform.

7 x-axis * 3 y-axis positions = 21 possibilities of pixels (only 16 used in practice)
Line following and detection

- Conditions to be on the line

- Trigger for U-turn manoeuvre

- Line following adjustments

- Line following manoeuvre

- Trigger for line approaching manoeuvres
Results and videos

- Line following and detection
 → Excellent for the black oval and S-shaped lines
 (work focus on handling these lines through trial and error)

\\(!\\ U-turn *manoeuvre* only designed for this geometry
→ Sharp turns of the black square not recognized as such
→ A blue line cannot be recognized with the current code
→ Thinner line not recognized due to the fixed selection of pixels

- Obstacle avoidance
 → Results differ depending on the configuration of the world
 → Some weaknesses remain
 - Avoidance and *manoeuvres* require sufficient space
 (sequence of different behaviors should not be too tight)
 - Wall may still be detected as a line under some shade conditions
 - Obstacle avoidance stop sometimes triggered too early or too late
Odometry

Figure 9. Error calculated at each timestep as the difference between the calculated and real positions.

Figure 6. S-shaped following

Figure 7. Small obstacle avoidance

Figure 4. Line detection

Figure 8. Cumulative error [m]

Figure 5. Oval following
Conclusion

- Development of a code for:
 - Line following and detection for a set of black curvy lines of fixed width coupled
 - Obstacle avoidance of two types of cuboid
 - Odometry

- Advent of autonomous vehicles

- Infinity of possible environments make this problem challenging to solve: diversity of lines and obstacles in shape, dimension and color as well as other parameters such as luminosity or shade