Project 1: Line following using the e-puck's camera

Lucie Dross, Chloé Udressy 26 May 2020

Professor: Alcherio Martinoli Supervisors: Chiara Ercolani, Anwar Quraishi

Overview

- Introduction
 - E-puck
 - Objectives
- Methods
 - Algorithm implementation
 - Trajectory using odometry and supervisor data
- Experiments and discussion
- Conclusion

E-puck

Sensors and actuators used

- camera RGB (52x39 resolution)
- 8 IR proximity sensors
- motion sensors
- 2 wheel motors

In Webots

 non-linearities and noise of sensors and actuators approximately reproduced

Objectives

• following 4 line shapes

- reacting to line ends
- avoiding and getting around obstacles
- comparing ground-truth and odometry positions

Structure of our algorithm

Initial stage: "passive" line searching

0. 360° rotation

First stage: active line searching and obstacle avoidance

- 1.1 searching and going to line
- 1.2 obstacle avoidance

Second stage: line following and obstacle circumvention

- 2.1 simple line following
- 2.2 obstacle circumvention
- 2.3 sharp turn
- 2.4 line ending, T shaped
- 2.5 line ending, | shaped
- 2.6 line perpendicular to the trajectory of the robot

Line searching and following

 m_i

RGB image grayscale image line boundaries on rows 18th, 32nd, 38th middle of the line on each row

- proportional controller $k = \frac{m_i - m_l}{m_i = \text{middle of the image}}$
 - m_l = middle of the line

line following: bottom row (38th)

 $v_{\text{left}} = \text{offset} - 35 k_{br} - 30 k_{br}^{3} - 25 k_{br}^{5} - 15 k_{br}^{7}$ $v_{\text{right}} = \text{offset} + 35 k_{br} + 30 k_{br}^{3} + 25 k_{br}^{5} + 15 k_{br}^{7}$

• line searching: 18th and 32nd rows

Obstacle avoidance

Stage 1 (line searching) → basic obstacle avoidance

• Braitenberg avoidance

Stage 2 (line following) → obstacle circumvention

Alternation between:

- Braitenberg avoidance
- Braitenberg attraction
- straight motion
- rotations

Supervisor

- Position in the global coordinate system
- Ground-truth trajectory effectuated by the robot
- wb_supervisor_node_get_position(EPUCK)

Odometry

- Data from motion sensors and initial position
- Conversion from the robot coordinate system to the global one
- Translation of wheel encoder readings into linear motion

Results

Experiments

- Three experiments on the 4 line shapes in order to evaluate
 - Obstacle circumvention n°1
 - Line reaching n°2
 - Obstacle avoidance n°3

Experiment	n°1	n°2	n°3
Success [%]	63	78	73
Failure [%]	37	22	27
Tries	57	60	60

Weaknesses and improvements

Constraints linked to the robot

- Noise on distance sensors
- Delay between the camera image and the robot position

Obstacle circumvention

• Alternance of attraction and avoidance behaviours

• Line acquiring

• Shadows

single set of Braitenberg coefficients mixing attraction and avoidance depending on the distance sensor

low-pass filter

enhancing the
line_or_shadow function

From Webots to reality

- Perception-to-action loop: delays!
- Memory much more limited
- Odometry errors more important (wheel diameters, misalignement...)

Conclusion

Thank you for your

