Road sign recognition with an e-puck

Signal, Instruments and Systems

Julien Clark, Gabriel Grosclaude, Théophile Maeder

Introduction

* Project goal
Program an e-puck to make it exit a maze by recognizing 3 signs roads.

Sign 1 : Turn left (90° ' Sign 2 : Turn right (90° Sign 3 : Turn 180°
g |

E-puck

a robot designed for education in engineering

8 Infrared sensors

1 Accelerometer

3 microphones

1 front color camera

1. Matlab
I\/I et h O d S Und.erstand FF-T‘theory

Design recognition
strategy

2. Webots

* Implement an T’ J_{__J-*r
algorithm - = . “mmm“ il

¢ Simulate into noise
free world

3. Real life

Implementation IRL

* Face variability and
noise

e Adjust strategy

FFT Analysis with Matlab

O The method used to differentiate the
3 signs was the Fast Fourier Transforms (FFT)

O At first FFT analysis with noise free sign's
picture on Matlab

O Graph 1 : Results of FFT applied on rows and
columns of sign 1 (noise free) :

08T

06

04T

0a2r

mat lab fft rows

. matlab fft columns

100

200

300 0

Graph 1

100

200

300

FFT Analysis with

Sign/FFT's Amplitude

Matlab

Columns

1 : Horizontal lines 0 Several big peaks
2 : Vertical lines Several big peaks 0
3 : Black 0 0

Table 1 : Results of FFT analysis

Recognition's strategy: Ratio between

amplitude on rows and columns

Compare either the average
or the maximum value

Webots Implementation (1.1)

* First strategy

Only one vector can be sent for the FFT.
One mean vector for the rows and one for the columns -> two FFT

Ratio between the two mean amplitude of the FFT vectors

FFT : moy_ratio = moy_col/moy_lin | Direction

moy_ratio < 1.5 && > 0.65 Turn 180°

moy_ratio < 0.5 Turn right

moy_ratio > 2 Turn left

E-Puck Implementation (1.1)

Efficient decisions must be made at all steps due to low processing
power conditions

O Wall avoidance

O Image Capture

O Image Processing

O Direction Decision

E-Puck Implementation (1.2)

Set moy_col, moy_lin and max_ratioto 0

Image Capture : ~ For (j=0; j<40; ++) {

O 160x160 image downsized to 40x40 pixels Set count_lin and count_col to 0
0 1image taken each time a sign is detected . For(i=0;i<d0; i) {
.] count_lin[j] += pic[i+40%j]
O Average all columns and lines into two vectors —— count_col[j] += pic[j+40*]
O FFT_BLOCK_LENGTH = 64) e
opl e . += t
0 Need to fill in the line and column vectors L N
O Add first values of each vector to the end }
— j=0
for (i=0; i<FFT_BLOCK_LENGTH; i--) {
if j>=40 j-=40
vec_lin[i] = count[j]/40

vec_col[i] = count[j]/40
j+H

E-Puck Implementation (1.3)

Image Processing: /{ ot copyvec row, (i KigCmpx, FT_BLOCK LENGTH),
e_doFFT_asm(sigCmpx);
O DoFFT Of COIumn vector T for (i=0; i<FFT_BLOCK_LENGTH; i++) {
. mag_sqr_row(i] = sigCmpx[i].real*sigCmpx[il.real + sigCmpx[i].imag*sigCmpx[i].imag;
Calculate Magnitude of FFT d v Tt 2 avg. it linsmag, sar_rowll semprimag slgtmptimes
}
Ca|CU|ate Average of M agn|tude ___—» avg_fft_lin=avg_fft_lin/FFT_BLOCK_LENGTH
Repeat for line vector

Choose direction according to ratio and magnitude of vectors

©C O O O

Results (1)

O Vast difference between simulated and real-world conditions
O Good results on webots

O Unreliable e-puck results

O Need to change our strategy --> Back to webots

Webots Implementation (2.1)

e Second strategy

Same strategy as the first to sent vectors for the FFT

Ratio between the two max amplitude of the FFT vectors

+ Simplest High pass filter (before sending to FFT)

for(i=FFT_BLOCK_LENGTH-1;i>1;i--)

{ \ ! , '
vec_row[i]=(vec_row[i]-vec_row[i-1]);) Y
vec_col[il=(vec_col[i]-vec_col[i-1]); White WP —-BP =100

r Pixel Pixel

WP =0 BP = 100

vec_row[0]=vec_row[1];
vec_col[@]=vec_col[1];

E-Puck Implementation (2.1)

O
O
O
O

Promising Results on E-Puck

Few occasional crashes

Attempt to use smaller picture (32x32) to reduce memory usage
40x40 still yields better results

Mean vs Max

Comparison between mean ratio without filter and max ratio with filter

Mean vs Max, good light cond.

120%

100% -

BO%

60%

40%

20%

0% -

Mean, no filter Max, with filter

m unsucessfull desicion

M sucessfull decision

Mean vs Max, bad light cond.

120%

100% -

BO%

60%

40%

20%

0% -

Mean, no filker

Max, with filker

m unsucessfull desicion

M sucessfull decision

Graph 2

Graph 3

Final results

O 3th of June : Maze test

R O O O CO

Time 2min21,8s Omin46,4s Omin45,2s Omin39,6s

O Average : 1min8,25s or 43,73s without first try

O Best attempt : 39,6s

W
N
qu)
-
V

c

_I

T

MM IMaze Mission) BB:88:27:59

Conclusion
O Globally : good final performances,
O The project's goal is achieved

O Improvement can be done :
e Recognition of the sign 1 (horizontal lines)

e Recognition in the shade (bad light condition)

e Optimization of memory allocation (to avoid crashes)

/\
Thank u foryour at@tlon |

	Road sign recognition with an e-puck��Signal, Instruments and Systems
	Introduction
	E-puck �a robot designed for education in engineering
	Methods
	FFT Analysis with Matlab
	FFT Analysis with Matlab
	Webots Implementation (1.1)
	E-Puck Implementation (1.1)
	E-Puck Implementation (1.2)
	E-Puck Implementation (1.3)
	Results (1)
	Webots Implementation (2.1)
	E-Puck Implementation (2.1)
	Mean vs Max
	Final results
	The maze
	Slide Number 17
	Conclusion
	�����Thank you for your attention !

