find the light source

SIS - Signals, Instruments and Systems

Nadège de Chambrier, Rahel Fischer, Laura Iten – SIE Bachelor VI, EPFL
Introduction

• objective

• set-up Webots/real world
find the light source

avoid obstacles
Braitenberg

\[
speed_{\text{left}} = \sum_{i=0}^{n} \alpha_{\text{left},i} \left(1 - \frac{\text{value}_i}{\text{range}}\right) \quad \text{speed}_{\text{right}} = \sum_{i=0}^{n} \alpha_{\text{right},i} \left(1 - \frac{\text{value}_i}{\text{range}}\right)
\]

<table>
<thead>
<tr>
<th>Sensor</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Right wheel</td>
<td>-160</td>
<td>-90</td>
<td>-90</td>
<td>-10</td>
<td>-10</td>
<td>60</td>
<td>15</td>
<td>35</td>
</tr>
<tr>
<td>coefficient</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Left wheel</td>
<td>20</td>
<td>30</td>
<td>55</td>
<td>-15</td>
<td>-10</td>
<td>-80</td>
<td>-110</td>
<td>-140</td>
</tr>
<tr>
<td>coefficient</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
\[
\text{speed}_{\text{left}} = \sum_{i=0}^{n} \alpha_{\text{left},i} \left(1 - \frac{\text{value}_i}{\text{range}}\right) \quad \text{speed}_{\text{right}} = \sum_{i=0}^{n} \alpha_{\text{right},i} \left(1 - \frac{\text{value}_i}{\text{range}}\right)
\]

<table>
<thead>
<tr>
<th>Sensor</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Right wheel coefficient</td>
<td>-160</td>
<td>-90</td>
<td>-90</td>
<td>-10</td>
<td>-10</td>
<td>60</td>
<td>15</td>
<td>35</td>
</tr>
<tr>
<td>Left wheel coefficient</td>
<td>20</td>
<td>30</td>
<td>55</td>
<td>-15</td>
<td>-10</td>
<td>-80</td>
<td>-110</td>
<td>-140</td>
</tr>
</tbody>
</table>

no light

<table>
<thead>
<tr>
<th>Sensor</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>(\Sigma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Right wheel</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Left wheel</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

light on the right side

<table>
<thead>
<tr>
<th>Sensor</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>(\Sigma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Right wheel</td>
<td>-160</td>
<td>-90</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-250</td>
</tr>
<tr>
<td>Left wheel</td>
<td>20</td>
<td>30</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>50</td>
</tr>
</tbody>
</table>
Initial decision tree

Start → Problem? → no → Light? → yes → Obstacle? → no → go to light

Start → Problem? → yes → debug

Light? → no → Obstacle? → no → go straight

Light? → yes → Obstacle? → yes → to be solved

Obstacle? → no → follow wall

Obstacle? → yes → to be solved

Obstacle? → no → follow wall
Follow wall difficulty
getting stuck

• definition
• inner orientation
• corner sensing
• addition to the supervisor
• noise implementation
Adapted decision tree

Start → Problem? no → Light? yes → Obstacle? no → go to light

Problem? yes → debug

Light? no → Obstacle? yes → avoid obstacle

Obstacle? no → go straight

Obstacle? yes → follow wall
Final decision tree

Start → Light?
- **Light?**
 - **yes** → Obstacle?
 - **Obstacle?**
 - **yes** → avoid obstacle
 - **no** → go straight
 - **no** → go to light

- **Obstacle?**
 - **yes** → avoid obstacle
 - **no** → go straight
Functions

• `go_to_light(speed, ls_value)`
• `avoidObstacle(speed, ds_value)`
• `backlight()`
• `straight()`
Video 1
Video 2
Video 3
Stuck in a gap
Conclusion

• one code for both worlds
• much unused ideas and code
• possible applications