
Distributed Intelligent Systems – W2:
Multi-Agent Systems based 

on Ant Trail Laying/Following 
Mechanisms: Algorithms and 

Applications
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Outline

• Moving beyond the original AS
– Ant Colony System (ACS)
– ACS with local search for TSP: ACS-3-Opt

• Trail laying and following mechanisms 
applied to network routing
– ABC
– AntNet

• ACO summary 

Source

Destination

2



Extending Ant System: 
The Ant Colony System 

Algorithm
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Constructive Heuristic and 
Local Search

Current wisdom says that a very good strategy for the 
approximate solution of NP-hard combinatorial 
optimization problems is the coupling of:

– a constructive heuristic (i.e. generate solutions 
from scratch by iteratively adding solution 
components)

– local search (i.e., start from some initial solution and 
repeatedly tries to improve by local changes)

These two methods are highly complementary. The 
problem is to find good couplings: ACO appears (as 
shown by experimental evidence) to provide such a good 
coupling. 
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2 Extensions of AS
• Ant Colony System (ACS) – improved

constructive heuristic 
(Gambardella & Dorigo, 1996; Dorigo & Gambardella, 1997)
– Different transition rule
– Different pheromone trail updating rules: global and local
– Use of a candidate list for the choice of the next city

• ACS-3-opt – constructive heuristic + local search
(Gambardella & Dorigo, 1996; Dorigo & Gambardella, 1997)
– Standard ACS + local search
– In case of TSP problems, 2-opt (2 edges exchanged), 3-opt (3 edges 

exchanged), and Lin-Kernighan (variable number of edges 
exchanged) are used as local search algorithms
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Ant Colony System
Loop \* t=0; t:=t+1 \*

Place one ant on each node \*there are n nodes \*

For k := 1 to m \* each ant builds a solution, in this case m=n\*

For step := 1 to n \* each ant adds a node to its path \*

Choose the next city to move by applying a 
probabilistic solution construction rule

End-for
End-for
Update pheromone trails

Until End_condition \* e.g., t=tmax \*
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Different Transition Rule
An ant k on city i chooses the city j to move according to the following rule:
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• q: uniform distributed random variable [0,1]
• q0: parameter between 0 and 1, controls exploration/exploitation (q0 < 0 as AS)
• q≤q0: deterministic rule, exploitation of the current knowledge of the problem 

(problem heuristic knowledge + learned knowledge)
• q>q0: probabilistic rule, more exploration, roulette wheel like in the original AS
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Virtual Pheromone:
Global Update with Elitism

AS: all ants can update pheromones trails in the same way
EAS: all ants update pheromones trails; extra amount for the best tour
ACS: the global update is performed exclusively by the ant that generated the 

best tour from the beginning of the trial; it updates only the edges of the 
best tour T+ of length L+ since the beginning of the trial (best-so-far, 
saving of computing time, no major difference with best-of-iteration)

+=∆ Ltij /1)(τ

Update rule for (i,j) edges belonging to T+: 

with 

Note 1: the result is a more directed, greedy search; ants are encouraged to search 
for path in the vicinity of the best tour found so far.
Note 2: notice the weighted sum of old and new pheromones, different from AS. 8
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Virtual Pheromone:
Local Update

All ants can perform a local update. When an ant k in city i select 
city the pheromone concentration on edge (i, j) is updated 
as follows:

k
iJj ∈

ξ: parameter; ξ = 0.1 from experimental finding, Bonabeau et al. book  ξ = ρ
τ0: parameter, also representing the initial pheromone quantity on all edges (like 

in AS). From experimental finding: τ0 = (nLnn)-1; n = number of cities, Lnn = 
length of the tour produced by the nearest neighbor heuristic only

Note: application of the local update rule make the pheromone level decreases 
each time that an edge is visited → indirectly favor exploration of not yet 
visited edges → avoid stagnation and convergence to a common path → 
increase probability that one of the m ants finds a even better T+ 9



Candidate List

• A candidate list is a list of cities of length cl (cl = 
algorithmic parameter) to be visited from a given city; 
cities in the candidate list are ranked according to the 
inverse of their distance, the list is scanned sequentially.

• An ant first restrict the choice of the next city to those in 
the candidate list; it uses standard ACS transition rule to 
select a city.

• Once all the cl closest cities in the candidate list for a given 
city i have been visited, the next city j is selected from the 
closest of the yet unvisited cities.
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Problem

Ant Colony System
(Dorigo & Gambardella,1997)

Eil50
(50 cities) 425 1830

Shortest
tour lenght

# of tours 
before best 
tour found

Genetic Algorithms
(Whitley et al., 1989)

428 25000

Shortest tour 
lenght

# of tours 
before best 
tour found

Simulated Annealing
(Lin et al., 1993)

443 68512

Shortest tour 
lenght

# of tours 
before best 
tour found

Eil75
(75 cities) 535 3480 545 80000 580 173250

KroA100
(100 cities) 21282 4820 21761 103000 N/A N/A

ACS for TSP – Comparison 
with Other Algorithms

ACS ran for 1250 iterations (end criterion) using 20 ants (25’000 
tours generated); average over 15 runs for all implementations; see 
Bonabeau et al. book and further pointers slide for more results
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ACS for TSP – Results on 
ATT532 Problem
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2 Extensions of AS
• Ant Colony System (ACS)

(Gambardella & Dorigo, 1996; Dorigo & Gambardella, 1997)
– Different transition rule
– Different pheromone trail updating rule
– Use of local update of pheromone trail
– Use of a candidate list for the choice of the next city

• ACS-3-opt
(Gambardella & Dorigo, 1996; Dorigo & Gambardella, 1997)
– Standard ACS + local search
– In case of TSP problems, 2-opt (2 edges exchanged), 3-opt (3 edges 

exchanged), and Lin-Kernighan (variable number of edges 
exchanged) are used as local search algorithms

13



ACS + Local Search
Loop \* t=0; t:=t+1 \*

Place one ant on each node \* there are n nodes \*

For k := 1 to m \* each ant builds a solution, in this case m=n \*

For step := 1 to n \* each ant adds a node to its path \*

Choose the next city to move by applying a 
probabilistic solution construction rule

End-for
Apply local search
End-for
Update pheromone trails

Until End_condition \* e.g., t=tmax \*
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k-opt Heuristic
• Take a given tour and delete (up to) k mutually 

disjoint edges 
• Each fragment endpoint can be connected to 2k − 2 

other possibilities: of 2k total fragment endpoints 
available, the two endpoints of the fragment under 
consideration are disallowed.

• Reassemble the remaining fragments into a tour, 
leaving no disjoint subtours (that is, don't connect 
fragment's endpoints together). 

• Do this systematically: generate the set of all 
candidates solutions possible by exchanging in all 
possible ways (up to) k edges
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2-Opt

a

b c

d a

b c

d a

b c

d

Original 
(connected graph, 
single tour)

Variant 1
(connected graph, 
single tour)

Variant 2
(disconnected graph, 
2 sub-tours)

2*2-2 = 2 alternative options
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Example of Local Search: 2-Opt

a

b c d

e

f

• 2-opt swapping: (b,f) and (a,c) replaced by (a,f) and (b,c)
• Tour 2 shorter than tour 1
• Note on pheromones update: 

 candidate tours at iteration t are not marked with pheromones immediately, they 
are just built based on pheromones of iteration t-1

 pheromones are updated on the edges of the already locally optimized solutions 
(i.e. evaporation, local and global update after local search).

b dc

e

f
a

21
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For TSP Problems: Local Search 
using 3-Opt

• For each ant k, at each iteration of ACS, up to three edges at the 
time are exchanged iteratively until a local optimum is reached 
while all other sub-tour orientations are maintained unchanged; 
full 3-opt, 2*3-2 = 4 alternative combinations for reconnecting a 
disconnected edge; in total 8 valid permutation of 3 edges at the 
time, including 4 degenerating to exchanges of 2 edges only (2-
opt exchanges must be considered in 3-opt search as well)

• In ACS-3-opt restricted permutation: only moves that do not 
revert the order in which the cities are visited, e.g.: (k,l), (p,q), 
(r,s) → (k,q), (p,s), (r,l)

• Computational speed-up obtained by using nearest neighbor list, 
2.5-opt algorithm, etc. See for instance [Bentley 1992].
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Advantages and Drawbacks of 
Local Search

• Local search is complementary to ant pheromone mechanisms, so 
probability it achieves a major impact on a given problem is high

• The quality of the achieved solution is in particular improved; the 
computational cost is increased 

• Local search lacks of good starting solutions on which it can 
perform combinatorial optimization; these solutions are provided by 
artificial ants using pheromone mechanisms

• Depending on targeted performance metrics (wished  solution 
quality vs. and desired computational cost) an appropriate balance 
between local search and constructive heuristic has to be chosen
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Trail Laying/Following 
Mechanisms applied to 

Communication Networks: 
Ant-Based Routing

Algorithms
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The Routing Problem
• The practical goal of routing algorithms is to build routing 

tables

• Routing is difficult because costs are dynamic
• Adaptive routing is difficult because changes in the 

control policy determine changes in the costs and vice 
versa

Destination 
node j

Routing table of node k (N-nodes net) 

Next node ij

...

...

...

...

1

i1

N

iN

k-1

ik-1

...

...

k+1

ik+1
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Two Main Algorithms up to Date
• ABC (Ant-Based Control), 

[Schoonderwoerd, Holland, et al., 1996]
– Target: telephone network (symmetric level of 

congestion on one given source-destination 
pair)

– Test: UK telephone network
• AntNet [DiCaro and Dorigo, 1998]

– Target: packet-switching network style Internet
– Tests: more exhaustive on several networks
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Ant-Based Control (ABC) 
Algorithm
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ABC – Routing Tables

1,
)]([ , −

=
Nik

i
dni trR

• d: destination; s: source, n: neighbor node, t: real time
• Assumption: same level of traffic congestion s-d and d-s (ok 

for telephone networks)
• N nodes in total, ki: neighboring nodes to node i
• Routing table node i (time-variant matrix with ki rows and N-1 

columns):

:)(, tr i
dn

For ants: probability that an ant with destination d 
will be routed from i to neighbor n
For calls: deterministic path (pick up the higher value 
for choosing the route from i to neighbor n)

Sum of all possible routes to neighbors at a given 
node = 1

Σ
n

r n,d (t) = 1
i
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ABC – Updating Rules
• Ants launched from any node (exist an optimal rate) 

continuously; travel from s → d
• Ants die when they reach d
• For routing table updating: s is viewed as d (ant has only 

information about the traffic at visited nodes; information 
used by future ants and calls)

• Each visited node’s routing table updated according to:

Σ
n

r n,d (t) = 1 for all n
i

Preserved !

r i-1,s (t+1) =
i r i-1,s (t) + δr

i

1 + δr

r n,s (t+1)  =
i

r n,s (t)
i

1 + δr
for n ≠ i-1 Decay

Reinforce

δr: reinforcement parameter
i-1: neighbor node the ant came from before joining i 25
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0,81 0,3 0,1 0,2

0,13 0,4 0,8 0,2

0,15 0,3 0,1 0,6

Routing table of node 4

A Simple Network Example with 5 Nodes
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4
1 2 3 5

0,81 0,3 0,1 0,1

0,13 0,4 0,8 0,1

0,15 0,3 0,1 0,8

Table 
entries 
to be 
updated

Ant destination
Probabilities 
for the next 
hop of the ant

Ex.: ant with node 5 as source and 
node 2 as destination

5

1 3

2

4
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ABC – Reinforcement

b
T
ar +=δ

T: absolute time spent in the network
a,b: parameters

Idea: ants have an age, the older they are and the less 
influence they have on the routing table; ants age faster 
if they pick up congested routes
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ABC – Node Capacity
• Node i has (maximal) capacity Ci (max number of 

connections, static) and spare capacity Si (capacity 
available for new connections, dynamic)

• Once a call is set-up between destination d and source 
s, each node in the route is decreased in its spare 
capacity by one connection (multiple connections if 
the node is used by multiple routes)

• If no spare capacity left for at least one of the node in 
the route under construction, the call is rejected

• When a call terminates (hanging up or rejection), the 
corresponding reserved capacity for each of the nodes 
in the route is made available again for other nodes
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ABC – Enforced Delay & Noise

Idea: less congested nodes delay less ants

• Delay imposed on ant reaching a given node i:

• Tunable noise parameter g
• g: probability to chose route at random 
• 1-g: probability to choose route according to 

routing tables

idS
i ceD −= c,d: parameters

Si: spare capacity

Idea: increase exploration 29



ABC - Sample Results
Call failure percentage with different algorithms –
static call probabilities
• 30-nodes BT network
• 10 runs
• 15’000 time steps total
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ABC - Sample Results
Call failure percentage with different algorithms –
dynamic call probabilities
• 30-nodes BT network
• 10 runs
• 15’000 time steps total
• after 7’500 steps different set of call probabilities
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AntNet Algorithm
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Two Main Algorithms up to Date
• ABC (Ant-Based Control), 

[Schoonderwoerd, Holland, et al., 1996]
– Target: telephone network; 
– Test: UK telephone network

• AntNet [DiCaro and Dorigo, 1998]
– Target: packet-switching network style Internet
– Tests: more exhaustive on several networks
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AntNet: The Algorithm
• Ants are launched at regular instants, asynchronously 

from each node to randomly chosen destinations; 
modulation of ant rate as a function of traffic

• Ants build their paths probabilistically with a 
probability function of: 

(i) artificial pheromone values (stored in the 
routing tables R), and

(ii) heuristic values (length of queues, stored in 
the trip vectors Γ)

• Ants memorize visited nodes and elapsed times
• Once reached their destination nodes, ants retrace their 

paths backwards, and update the pheromone trails and 
trip vectors
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Using Pheromones and Heuristic 
to Choose the Next Node

• τijd is the pheromone trail (multiple pheromone trails for the same 
link i,j!); normalized to 1 for all possible neighboring nodes 

• ηij is an heuristic evaluation of link (i,j) which introduces problem 
specific information (e.g., in AntNet ηij is ∝ to
the inverse of link (i,j) queue length)

• unvisited next nodes first; cycling ants do not update pheromones

i

ant’s destination = d

τird ;ηir

j

k

τikd ;ηik

r

( ) ( ) ( )( )ttftp ijijd
k
ijd ητ ,=

τijd ;ηij

Additional (real) time-dependency!
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Ants’ Pheromone Trail Depositing

where the (i,j)’s are the links visited 
by ant k, and

where qualityk is set proportional to 
the inverse of the time it took ant k
to build the path from i to d via j

i

τijd

Source

Destination

d

j

( ) k
ijd

k
ijd

k
ijd ττρτ ∆+⋅−← 1

kk
ijd quality= τ∆
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AntNet: Data Structures at Nodes
• Routing table Ri: 

Memorizes probabilities of choosing each neighbor nodes 
for each possible final destination

• Trips vector Γi:
contains statistics about 
ants’ trip times from current node 
i to each destination node d
(means and variances); 
used for calculating pheromone 
reinforcement (“qualityk”)

d

Routing table of node i 
Destination nodes

P(i,n,d)

n

Trips vector of node i

......
σ2(i,1) σ2(i,d) σ2(i,N)

µ(i,d) µ(i,N)µ(i,1)
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AntNet: the Role of F-ants and of B-ants
• F-ants collect implicit and explicit information on 

available paths and traffic load 
– implicit information, through the arrival rate at their 

destinations
– explicit information, by storing experienced trip times

• F-ants share queues with data packet
• B-ants are F-ants which reached their destination; they 

fast backpropagate info collected by F-ants to visited 
nodes and update routing tables R & trip vectors Γ; 
have a stack memory with visited nodes

• B-ants use higher priority queues (usually available on 
real network for control packages) 38



AntNet: Experimental setup

• Many topologies
• Realistic simulator (discrete events, not standard)
• Many traffic patterns
• Comparison with many state-of-the-art algorithms
• Performance measures
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Experimental Setup:
Network Topologies

6x6 grid net

1

1

1
1

1
1

1

1

1

Simple net

Japanese NTT net

American NSF net
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Experimental Setup:
Traffic Characteristics

Traffic patterns are obtained by the combination of 
spatial and temporal distributions for sessions 

• Spatial distributions
– Uniform (U)
– Random (R)
– Hot Spots (HS)

• Temporal distributions
– Poisson (P)
– Fixed (F)
– Temporary (TMP)
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Experimental Setup: 
Experiments Design

• Experiment duration:
– Each experiment, lasting 1000 sec, is repeated 10 times
– Before feeding data, routing tables are initialized by a 500 

sec phase

• Experiment typology:
– Study of algorithms behavior for increasing network load
– Study of algorithms behavior for transient saturation
– Evaluation of influence of control packet traffic on total 

traffic
42



Competing Algorithms
AntNet was compared with:

– OSPF (Open Shortest Path First, current 
official Internet routing algorithm)

– SPF (Shortest Path first)
– ABF (Adaptive Bellman-Ford)
– Q-routing (asynchronous on-line BF)
– PQ-R (Predictive Q-routing)
– Daemon: approximation of an ideal algorithm

It knows at each instant the status of all queues 
and applies shortest path at each packet hop 
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Measures of Performance

Standard measures of performance are
• Throughput (bits/sec): quantity of service
• Average packet delay (sec): quality of service

Good routing:
– Under high load: increase throughput for same 

average delay
– Under low load: decrease average delay per 

packet 
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How to Read Results

• Routing is a multi-objective problem 
(maximizing throughput and minimizing delay)

• Max throughput is the main criterion: 
non max throughput means 
– retransmissions, 
– error notification
– augmented congestion

• Average packet delay has inherently very 
high variance 
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NSFNET & NTTnet 
(increasing UP traffic)

Increasing Uniform-Poisson (UP) traffic
UP traffic increased by reducing the Mean Session Inter Arrival (MPIA) time [s]

Th
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g 

pa
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et
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la

y
From Di Caro and Dorigo, 1998,
Journal of Artificial Intelligence Research

NTT netNSF net

Low MPIA, higher 
traffic

High MPIA, lower 
traffic
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Routing Overhead

AntNet OSPF SPF BF Q-R PQ-R Daemon
SimpleNet 0.33 0.01 0.10 0.07 1.49 2.01 0.00
NSFNET-UP 2.39 0.15 0.86 1.17 6.96 9.93 0.00
NSFNET-RP 2.60 0.16 1.07 1.17 5.26 7.74 0.00
NSFNET- UP-HS 1.63 0.15 1.14 1.17 7.66 8.46 0.00
NTTnet-UP 2.85 0.14 3.68 1.39 3.72 6.77 0.00
NTTnet- UP-HS 3.81 0.15 4.56 1.39 3.09 4.81 0.00

Ratio (10-3) between bandwidth occupied by the routing 
packets and the total available network bandwidth 

From Di Caro and Dorigo, 1998,
Journal of Artificial Intelligence Research
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ACO Summary
• ACO metaheuristic

• Overall performance in the literature

• ACO theory

• Applications using ACO
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Why Do Ant-Based Systems Work?
Three important components:

• DIFFERENTIAL PATH LENGTH: a shorter path 
receives pheromone quicker; on-line set-up (e.g., 
telecom or vehicle routing): real time; off-line set-up 
(e.g., TSP): through heuristic desirability, over iterations 

• QUALITY: a shorter path receives more pheromone

• COMBINATORICS: in most real-world problems a 
shorter path receives pheromone more frequently
because it is likely to have a lower number of decision 
points 49



What is a Metaheuristic?

• A metaheuristic is a set of algorithmic concepts that 
can be used to define or organize heuristic methods 
applicable to a wide set of different problems

• Examples of metaheuristic include 
– simulated annealing
– tabu search
– iterated local search
– genetic algorithms
– particle swarm optimization (later in the course)
– ant colony optimization
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The ACO Metaheuristic

• Ant System and AntNet have been 
extended so that they can be applied to 
any shortest path problem on graphs

• The resulting extension is called 
Ant Colony Optimization metaheuristic

Dorigo, Di Caro & Gambardella, 1999
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The ACO-Metaheuristics Procedure

procedure ACO-metaheuristics()
while (not-termination-criterion)

schedule sub-procedures
generate-&-manage-ants()
execute-daemon-actions() {Optional} 
update-pheromones()

end schedule sub-procedures
end while

end procedure These are problem specific 
centralized actions; e.g., local search, 
select the best ant allowed to deposit 
extra pheromone 52



ACO: Quality of Results Obtained
SEQUENTIAL ORDERING PROBLEM (SOP)

Best heuristic currently available Gambardella-Dorigo

QUADRATIC ASSIGNMENT PROBLEM (QAP)
Among best heuristic currently available
on “real-world” problems Gambardella-Dorigo-Taillard-Stützle

ROUTING IN CONNECTION-LESS NETWORKS
Among best heuristics currently available Di Caro-Dorigo

VEHICLE ROUTING PROBLEM (VRP)
Among best heuristics currently available
for vehicle routing problems with time windows Gambardella et al.

SHORTEST COMMON SUPERSEQUENCE PROBLEM (SCS)
Among best heuristics currently available Middendorf

TRAVELLING SALESMAN PROBLEM (TSP)
Good results, although not the best Gambardella-Dorigo-Stützle

GRAPH COLOURING PROBLEM (GCP)
Good results, although not the best Hertz

SCHEDULING PROBLEM
Promising preliminary results on the single
machine weighted total tardiness problem Dorigo-Stützle

MULTIPLE KNAPSACK PROBLEM (MKP)
Promising preliminary results Michalewicz 53



ACO: Theoretical results
• Gutjahr (Future Generation Computer Systems, 2000; 

Information Processing Letters, 2002) and Stützle and 
Dorigo (IEEE Trans. on Evolutionary Computation, 2002)  
have proved  convergence with prob 1 to the optimal 
solution of different versions of ACO

• Meuleau and Dorigo (Artificial Life Journal, 2002) have 
shown that there are strong relations between ACO and 
stochastic gradient descent in the space of pheromone trails, 
which converges to a local optima with prob 1

• Birattari et al. (TR, 2000) have shown the tight relationship 
between ACO and reinforcement learning

• Rubinstein (TR, 2000) has shown the tight relationship 
between ACO and Monte Carlo simulation
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ACO: Real-World Applications
• Sequential ordering in a production line 

(Gambardella, under evaluation at MCM, Ferrari subcontractor, Italy)

• Routing of gasoline trucks in Canton Ticino                        
(Gambardella, in use by Pina Petroli, Switzerland)

• Job-shop scheduling 
(Bonabeau, in use at Unilever, France)

• Project scheduling
(Kouranos, in use at Intracom S.A , Greece)

• FaxFactory application                                  
(Rothkrantz, Delft Universitaet, in use at KPN, Netherlands)

• Water management problems 
(Mariano, Mexican Institute of Water Technology, Mexico)

• Vehicle routing with time windows              
(Gambardella, AntOptima, Migros Supermarkets, Switzerland; Number 1 Logistic 
Group, Italy) 55



Additional Literature – Week 2
Book
• M. Dorigo and T. Stuetzle, “Ant Colony Optimization”, MIT Press, 2004.

Papers
• Gambardella L.M, Taillard E., Dorigo M., “Ant colonies for the Quadratic 

Assignment Problem”, J. of the Operational Research Society, 1999, Vol. 50, 
pp.167-176. 

• Schoonderwoerd R., Holland O., Bruten J., and Rothkrantz L., “Ant-Based Load 
Balancing in Telecommunications Networks”. Adaptive Behavior, Vol. 5, pp. 169-
207, 1996.

• Di Caro G. and Dorigo M., “AntNet: Distributed Stigmergic Control for 
Communications Network”. Journal of Artificial Intelligence Research, Vol. 9, pp. 
317-365, 1998.
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