Distributed Intelligent Systems

Course Project:

Multi-robot navigation in cluttered and dynamic environments

1.04.2021
Goal

- To implement multi-robot navigation strategies
 - Flocking
 - Formation

- For a multi-robot system
 - Group of e-puck robots

- In simulation
 - Webots
Environments

- Cluttered and dynamic:
 - Static obstacles
 - Different groups crossing each other

- Simplify: two individual scenarios:
 - Static obstacles
 - Different groups crossing each other
Scenario 1: Obstacles

- Maze with obstacles
- The group should be able to navigate around them and regroup
Scenario 2: group collision

- Arena
 - 2 groups
 - Each group starts at opposite ends
Project Phases

1. Localization techniques
 - Odometry
 - GNSS
 - Combo (Kalman filter)

2. Spatial coordination
 - Formation
 - Flocking
 - Study influence of parameters on the performance / Scalability of the group.

3. Parameter optimization
 - PSO (any variant)
Simulation

• Part 1- Localization
 • Open the world localization.wbt. The controller localization_controller contains two pre-programmed trajectories.
 • The provided code only makes the robot move along one of the two trajectories.
 • You should implement localization using
 – Odometry based on wheel encoders
 – Odometry based on accelerometer measurements + wheel encoders for heading
 – GPS only.
 – Kalman filter with GPS and odometry
 • Set GPS update interval is set to 1s (Don’t change it). Make sure your code accounts for this update rate.
Simulation

- Initial environment for the two scenarios

Scenario 1

Scenario 2

obstacles
group0
group1
group0
Ground rules

• No modifications in the simulation world
 – Check with a TA if needed
 – Any modification should be mentioned (e.g. number of robots)

• Use methods learned in the course
 – ex. Kalman filter, PSO, etc.

• Only distributed solutions
 – No communication from the supervisor

• Calculate metrics using the supervisor
 – Implement metrics in a supervisor
 – Statistics: multiple runs, different environments, etc.
Notes

• New environments
 – Feel free to make new worlds and test your methods, but only after it is done in the provided ones.

• Different parameters
 – Evaluate your method with different parameters will be appreciated (e.g. number of robots, localization technique)
Code Evaluation

• Performance evaluation
 – A test environment will be provided
 – The metrics will be calculated in a supervisor
Material to hand in

- **Report**
 - End of the semester
 - Details will be communicated later

- **Code and Webots files**
 - They will be checked by a TA for grading

- **Presentation**
 - Exam period
 - Details will be communicated later
Evaluation

• Initiative, commitment, autonomy, rigorousness (20%)

• Quality of the proposed solution (20%)

• Quantitative performance on distributed metrics, assessed after submission (20%)

• Quality of the report (30%)

• Teamwork (10%)
Assistant

• Last hour of each lab session
 – Please keep lab and project related questions in their respective times

• Discord
 – Voice channels are to communicate with a TA during the project assistance hour.
 – Text channel is for out of hour questions. Feel free to help each other out.
 – The TAs will only answer to the text channel questions according to their availability.
 – No personal assistance is provided outside the lab/project.
QUESTIONS?