Distributed Intelligent Systems – W7
Multi-Level Modeling Methods for Swarm Robotic Systems
Outline

• Multi-level modeling framework
 – Motivation and rationale
 – Modeling assumptions
 – Methodology

• A simple linear example

• Calibration methods for multi-level models
 – Microscopic and macroscopic parameters
 – Approximations
Modeling Rationale, Choices, and Framework Overview
Motivation for Modeling

“Modeling of systems has usually three objectives: abstraction, simplification, and formalization.”
(p. 96)

“The main objective of modeling in swarm robotics is dimension reduction.”
(p. 97)
Motivating Examples - Manipulation

Puck Aggregation
(5 robots – 25 cm)

[Beckers et al., SAB 1994]
[Martinoli et al., ECAL 1999]

Seed-Chain Assembling
(10 Khepera I – 5.5 cm)

[Martinoli et al., Robotic and Autonomous Systems, 1999]
[Agassounon et al., Autonomous Robots, 2004]
Motivating Examples - Sensing

Wireless-Based Swarming
(7 Linuxbots, 24 cm)

[Nembrini et al., SAB 2002]
[Winfield et al., *Swarm Intelligence*, 2008]

Wireless-Based Swarming
(40 e-pucks, 7 cm)

[Pereira et al., IROS 2013]
Another Motivation -
Solving a Key Inverse Problem

e-puck robots, an EPFL-FIFO project by ASL/LSRO-DISAL-LIS, 2007
Motivation for Modeling

• Understanding the interplay of the various elements of the system (e.g., robot features, robot numbers, environment, noise level)

• Formally analyzing system properties

• Having additional tools for designing and optimizing the swarm robotic system

• Delivering performance predictions for the ensemble in shorter time or before doing actual experiments

• Investigating experimental conditions difficult or impossible to reproduce in reality
Modeling Choices

- **Gray-box approach**: to easily incorporate a priori information (e.g., # of agents, technological and environmental features) and aim at model interpretability
- **Probabilistic**: to capture noisy interactions, noisy robotic components, stochastic control policies, and enable aggregation schemes towards abstraction
- **Multi-level**: to represent explicitly different design choices, trade off computational speed and faithfulness to reality, bridge mathematically tractable models and reality in an incremental way
- **Bottom-up**: start from the physical reality and increase the abstraction level until the highest abstraction level
Multi-Level Modeling Methodology

Target system (physical reality): information on controller, S&A, communication, morphology and environmental features

Macroscopic: representation of the whole swarm (typically a mathematical model)

Microscopic: multi-agent models, only relevant robot features captured, 1 agent = 1 robot

Submicroscopic: intra-robot (e.g., S&A, transceiver) and environment (e.g., physics) details reproduced faithfully
Multi-Level Implementation

Choices for this Course

- **Submicroscopic**: Webots

- **Microscopic**: non spatial, state = behavior, exact model in terms of quantities (e.g., agent/state)

- **Macroscopic**: non spatial, mean field approach, Ordinary Differential Equation (ODE) approximation applies (e.g., average number agents/state)
Modeling Assumptions
Invariant Experimental Features

- **Short-range** (typically 1 robot diameter), **crude** (noisy, a few discrimination levels) proximity sensing
- **Local communication and teammate sensing** carried out with potentially longer range communication channels
- **Full mobility but basic navigation** (no planning, no absolute localization)
- **Reactive, behavior-based control**, with a few internal states, designed from a local perspective
- **Not overcrowded arenas**
- **Multiple runs** (typically 5+) for the same experimental parameters; **randomized robot poses** at the beginning
Modeling Assumptions: Semi-Markovian Properties

- Description for environment and multi-robot system using states
- The system future state is a function of the current state (and possibly of the amount of time spent in it)

Submicroscopic
(pose, S&A state, etc.)

Microscopic/Macroscopic
(transition probabilities, state duration)
Modeling Assumptions: Spatiality

- **Nonspatial metrics** for collective performance
- **Well-mixed system** because of simple navigation, multiple randomized interactions in a convex environment, multiple runs with randomized initial conditions, no overcrowding (sparseness)

Submicroscopic: spatial

Micro/macroscopic: nonspatial

Free space
Modeling Framework
Microscopic Level

\[p(n,t) = \text{probability of an agent to be in the state } n \text{ at time } t \]

If Markov properties fulfilled:

\[\Delta p(n,t) = p(n,t + \Delta t) - p(n,t) \]

\[= \sum_{n'} p(n,t + \Delta t \mid n',t) p(n',t) - \sum_{n'} p(n',t + \Delta t \mid n,t) p(n,t) \]

- **Inflow**
 - Transition probability
 - Sum over all possible states \(n' \) (≠ n) the agent can be in

- **Outflow**
 - Probability the agent was in a given state \(n' \)
Macroscopic Level – Time-Continuous

Left and right side of the equation: averaging over the total number of agents, dividing by Δt, limit $\Delta t \to 0$; neglect distributions of the stochastic variables and assume homogeneous agents (mean field approach):

\[
\frac{dN_n(t)}{dt} = \sum_{n'} W(n \mid n', t) N_{n'}(t) - \sum_{n'} W(n' \mid n, t) N_n(t)
\]

Rate Equation
(time-continuous)

\[
\text{inflow} \quad \text{outflow}
\]

$n, n' = \text{states of the agents (all possible states at each instant)}$

$N_n = \text{average fraction (or mean number) of agents in state } n \text{ at time } t$

\[
W(n \mid n'; t) = \lim_{\Delta t \to 0} \frac{p(n, t + \Delta t \mid n', t)}{\Delta t}
\]

Transition rate
Macroscopic Level – Time-Discrete

Rate Equation (time-discrete):

\[N_n((k+1)T) = N_n(kT) + \sum_{n'} TW(n' | n', kT)N_{n'}(kT) - \sum_{n'} TW(n' | n, kT)N_n(kT) \]

\[\text{inflow} \quad \text{outflow} \]

- \(k \) = iteration index
- \(T \) = time step, sampling interval
- \(TW \) = transition probability per time step

Notation often simplified to:

\[N_n(k+1) = N_n(k) + \sum_{n'} P(n | n', k)N_{n'}(k) - \sum_{n'} P(n' | n, k)N_n(k) \]

- \(T \) is specified in the text once of all, \(P \) is calculated from \(T*W \) or other calibration methods
Time Discretization: The Engineering Recipe

Time-discrete vs. time-continuous models:

1. Assess what’s the **time resolution** needed for your system **performance metrics** (if time step chosen appropriately small, no impact on prediction accuracy in the type of experiments presented)

2. Choose whenever possible the **most computationally efficient model**: time-discrete less computationally expensive than emulation of continuity (e.g., Runge-Kutta, etc.)

3. Advantage of time-discrete models: a **single common sampling rate** can be defined among different modeling levels
Model Structure and Metrics

- Exploit controller blueprint at submicroscopic/physical level as structure for higher level of abstraction ("behavior = state"); use it for both microscopic and macroscopic levels
- State granularity arbitrary but (non spatial) performance metrics must be computable explicitly at all modeling levels

\[\text{Performance} = f(\#\text{robots}_{\text{search}}, \#\text{robots}_{\text{grip}}) \]

\[\text{Performance} = f(\#\text{robots}_{\text{search}}, \#\text{robots}_{\text{avoidance}}) \]
Model Parameters

• Number of parameters: decreasing with increasing abstraction

• Incremental calibration: a given level can be calibrated on the underlying one using aggregation techniques (e.g., first moment for a distribution at lower abstraction level)

• Explicit representation: any system parameter of interest should be captured explicitly at a given level

• Multiple calibration methods for model parameters:
 – Ad hoc experiments (e.g., interaction time, sensor transfer functions)
 – System identification techniques (with constrained parameter fitting)
 – Statistical verification techniques (e.g., trajectory analysis)

• Submicroscopic models: large parameter space (e.g., individual sensor and actuator features).

• Micro- and macroscopic models, essentially two parameter types:
 – State durations
 – State transition probabilities
Linear Example: Obstacle Avoidance
A Simple Linear Model

Example: search (moving forwards) and obstacle avoidance

© Nikolaus Correll 2006
A Simple Example

Deterministic & microscopic characterization

Nonspatiality & microscopic characterization

PFSM

Probabilistic agent’s flowchart
Linear Model – Probabilistic Delay

- **Ta** = mean obstacle avoidance duration
- **pa** = probability of moving to obstacle av.
- **ps** = probability of resuming search
- **Ns** = average # robots in search
- **Na** = average # robots in obstacle avoidance
- **N0** = # robots used in the experiment
- **k** = 0, 1, … (iteration index)

\[
N_s(k+1) = N_s(k) - p_a N_s(k) + p_s N_a(k)
\]

\[
N_a(k+1) = N_0 - N_s(k+1)
\]

\[
N_s(0) = N_0 ; N_a(0) = 0
\]
Linear Model – Deterministic Delay

\[N_s(k+1) = N_s(k) - p_a N_s(k) + p_a N_s(k-T_a) \]

\[N_a(k+1) = N_0 - N_s(k+1) \]

\[N_s(0) = N_0 ; N_a(0) = 0 \]

\[T_a = \text{mean obstacle avoidance duration} \]

\[p_a = \text{probability moving to obstacle avoidance} \]

\[N_s = \text{average # robots in search} \]

\[N_a = \text{average # robots in obstacle avoidance} \]

\[N_0 = \text{# robots used in the experiment} \]

\[k = 0,1, \ldots \text{ (iteration index)} \]
Linear Model – Sample Results

N_a^*/N_0

Submicro to micro comparison
(different controllers, steady state comparison)

Micro to macro comparison
(same robot density but wall surface become smaller with bigger arenas)
Steady State Analysis

- \(N_n(k+1) = N_n(k) \) for all states \(n \) of the system \(\rightarrow N_n^\ast \)
- Note 1: equivalent to differential equation of \(\frac{dN_n}{dt} = 0 \)
- Note 2: for time-delayed equations easier to perform the steady-state analysis in the Z-space but in t-space also ok (see IJRR-04)

- For our linear example (deterministic delay option):

\[
N_s^\ast = \frac{N_0}{1 + p_a T_a} \quad N_a^\ast = \frac{N_0 p_a T_a}{1 + p_a T_a}
\]

Ex.: normalized mean number of robots in search mode at steady state as a function of time for obstacle avoidance
Model Calibration
1. **Measure** all interaction times of interest in your system, i.e. those which might influence the system performance metrics.

 Note: often “delay states” can just **summarize** all what you need without getting into the details of what’s going on within the state.

2. Consider only **average values** (we might consider also parametrized distributions in the future, the modeling methodology does not prevent to do so)

3. For time-discrete systems: choose the **time step** $T = \text{GCF of all the durations measured}$ (e.g., 3 s obstacle avoidance, 4 s object manipulation, $T = 1$ s) -> no rounding error.

 Note: more accuracy in parameter measuring means in this case more computational cost when simulating
State Transition Probabilities

- **Assumptions:**
 - non spatial metrics
 - well-mixed system
 - finite enclosed arena of area A_{arena}
 - single object of area A_{object}

- **Non-spatial model:** bodiless robot randomly hopping around

- **Idea:** probability encountering object $\propto A_{object} / A_{arena}$

Geometric Probabilities g_i

- g_s, g_w, \ldots are functions of sensor range, behavior, robot’s and object’s size, \ldots: interaction characterization!
- Geometric probabilities can be considered normalized detection areas (normalized over the total area of the experiment).

Example: seed or stick

$$g_s = \frac{A_s}{A_{\text{arena}}}$$
Encountering Probabilities

[Correll & Martinoli, ISER 2004]

1. Measure geometric probabilities of detection g_i

2. Calculate the **encountering rate** $r_i \ [s^{-1}]$ for the object i from the geometric probabilities g_i:

 $$r_i = \frac{\nu W_s}{A_s} g_i$$

 $A_s =$ detection area of the smallest object
 $
u =$ mean robot speed
 $W_s =$ robot’s detection width for the smallest object (center-to-center)

3. For time-discrete models, calculate the **encountering probabilities** p_i (per time step) from the encountering rates:

 $$p_i = r_i T$$

Note: slightly different from [Martinoli et al., IJRR04] (decoupled time and space)!
Experimental Validation of Spatiality Assumptions

Nonembodied obstacles = detection surfaces

Numerical example (mean ± std dev, 3 locations, 100 h simulated time):

<table>
<thead>
<tr>
<th></th>
<th>Square</th>
<th>Rect.</th>
<th>Round</th>
<th>All shapes</th>
<th>Geometry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normalized detection surface</td>
<td>0.31 ± 0.04</td>
<td>0.3 ± 0.03</td>
<td>0.32 ± 0.02</td>
<td>0.31 ± 0.03</td>
<td>0.31</td>
</tr>
</tbody>
</table>
Model Calibration - Practice

- Assumptions (well-mixed, linear overlap of areas) might be only partially fulfilled
- We do not capture distributions in the model parameters, only deterministic average values; distributions might more faithfully capture:
 - Controller type (e.g., distal vs. proximal)
 - Active vs. passive objects (e.g., robot vs. wall)
 - Embodiment vs. non embodiment (e.g., area vs. real obstacle)
 - Way of measuring your metrics (e.g., egocentric, allocentric)
 - Impact on the considered swarm performance metric through error propagation (clear decoupling between parameters and structure inaccuracies of the model)
Model Calibration - Practice

Bin distribution of interaction time T_a (mean $T_a = 25 \times 50 \text{ ms} = 1.25 \text{ s}$)

- Micro/macro, deterministic delay
- Sub-microscopic, distal controller
- Micro/macro, probabilistic delay
- Submicroscopic, proximal controller
Model Calibration - Practice

Geometric probability g: example of transition in space from search to obstacle avoidance (1 moving robot, 1 dummy robot, Webots measurements, egocentric)

Distal controller (rule-based)

Proximal controller (Braitenberg, linear)
Conclusion
Take Home Messages

• Three main levels of models: submicro, micro and macro
• Microscopic models use exact discrete quantities, macroscopic mean-field models use average quantities in terms of unit numbers
• Multi-level modeling allows for different approximations, accuracy/computation trade-offs
• Models’ parameter calibration is difficult and still an open challenge
• Methodological framework tested on multiple case studies (additional examples discussed next week)
Additional Literature – Week 7

Papers

