Distributed Intelligent Systems
Lab 7 Tutorial

Faezeh Rahbar
Part 1: SwarmViz

• Software for PSO visualization
 – Implementation in c++

• Installation of Qt5
 – While waiting for installation, check out the code or the next part
Exploring PSO

- Run PSO on two benchmark functions (Sphere and Rastrigin functions) using SwarmViz

- Observe how swarm acts when varying parameters
SwarmViz

• Make sure you only have the indicated plots marked

• Fitness landscape plot
 – A history of all particles
 – Colors indicate fitness values

• Trajectory plots
 – Movement of particles
 – Previous positions can also be plotted
SwarmViz

Fitness Landscape

Euclidean Distance

Fitness (Best and average)
Part 2 : PSO for Robotic Learning

• PSO with an Artificial Neural Network to do unsupervised robotic learning

• Design a fitness function for obstacle avoidance
 – Compare with the fitness proposed by Floreano and Mondada

• How is the performance affected by PSO parameter variations
Code Structure

Pso_sup.c
- **Main()**
 - Initialize world
 - Best=pso()
 - Evaluate best

Calc_fitness()
- Reposition robots randomly
- Send candidate solutions to robots
- Evaluate fitness
- Return fitness

Pso.c
- **Pso()**
 - Initialize swarm
 - For each iteration
 - Move particles
 - Evaluate particles
 - Return best particle

Obs_con.c
- **Main()**
 - Initialize robot
 - Receive weights from supervisor
 - Run controller with weights
 - Send sensor data to supervisor
Notes

• The performances for robotic learning are printed in the console of Webots

• Please fill in the Feedback Forms on Moodle