Distributed Intelligent Systems
Lab 6 Tutorial
Faezeh Rahbar
Part 1: Exploring PSO

• Run PSO on two benchmark functions (Sphere and Rastrigin functions) using SwarmViz

• Observe how swarm acts when varying parameters
SwarmViz

• Make sure you only have the indicated plots marked

• Fitness landscape plot
 – A history of all particles
 – Colors indicate fitness values

• Trajectory plots
 – Movement of particles
 – Previous positions can also be plotted
SwarmViz

Fitness Landscape

Euclidean Distance

Fitness (Best and average)
Part 2 : PSO for Robotic Learning

• PSO with an Artificial Neural Network to do unsupervised robotic learning

• Design a fitness function for obstacle avoidance
 – Compare with the fitness proposed by Floreano and Mondada

• How is the performance affected by PSO parameter variations
Code Structure

Pso_sup.c

- **Main()**
 - Initialize world
 - Best = pso()
 - Evaluate best

- **Calc_fitness()**
 - Reposition robots randomly
 - Send candidate solutions to robots
 - Evaluate fitness
 - Return fitness

Pso.c

- **Pso()**
 - Initialize swarm
 - For each iteration
 - Move particles
 - Evaluate particles
 - Return best particle

Obs_con.c

- **Main()**
 - Initialize robot
 - Receive weights from supervisor
 - Run controller with weights
 - Send sensor data to supervisor
Notes

• The performances for robotic learning are printed in the console of Webots

• Please fill in the Feedback Forms on Moodle