
Distributed Intelligent Systems and Algorithms Laboratory (DISAL) EPFL

FR, Distributed Intelligent Systems, Lab 7: PSO for Single Robot Systems 1

1 Lab 7: PSO for Benchmark Functions and Single Robot
Systems
This laboratory requires the following (the development tools are installed in

GR B0 01 and GR C0 02 already):

• C development tools (gcc, make, etc.)
• Webots simulation software
• Webots User Guide
• Webots Reference Manual
• SwarmViz

Depending on your programming skills, the laboratory duration might require an

effort of up to five hours although assistance will be provided in the computer rooms
during a time window of three hours. Although this laboratory is not graded, we
encourage you to take notes during the course of this laboratory to aid in preparing the
final exam. A solution to this lab will be posted after the lab session.

1.1 Office hours
Additional assistance outside the lab period (office hours) can be requested using

the dis-ta@groupes.epfl.ch mailing list.

1.2 Information
In the following text you will find several exercises and questions.

• The notation Sx means that the question can be solved using only additional
simulation or an experimental manipulation.

• The notation Qx means that the question can be answered theoretically,
without any simulation.The notation Ix means that the problem has to be
solved by implementing a piece of code and performing a simulation or an
experimental manipulation.

• The notation Bx means that the question is optional and should be answered if
you have enough time at your disposal.

To prepare yourself for the exam and to allow you for better time planning during the
exercise session, we show an indicative number of points for each exercise between
parentheses. The combined total number of points for the laboratory or homework
exercises is 100.

1.3 Optimization
In many instances, we want to find either the minimum or maximum value of

some function. If the function in question is complex (e.g., non-convex,
discontinuous, multiple peaks) or even unknown, it is often impossible to accomplish
this task using exact methods. Furthermore, if the function parameter space is very

mailto:dis-ta@groupes.epfl.ch

Distributed Intelligent Systems and Algorithms Laboratory (DISAL) EPFL

FR, Distributed Intelligent Systems, Lab 7: PSO for Single Robot Systems 2

large, a systematic search of this space is often too computationally expensive.
Therefore, a number of metaheuristic techniques have been developed to find near-
optimal solutions, such as Genetic Algorithms (GA) and Particle Swarm Optimization
(PSO).

1.4 The Particle Swarm
To find minima/maxima, repeated evaluations of the function in question must be

done at different points. A good optimization algorithm will use the information
obtained from these evaluations to choose the locations of future evaluations, and
eventually to decide where the minimum/maximum is.

In PSO, a set of “particles” is initialized with a random position for each particle.
Each particle is also assigned a random “velocity” in the search space. Particles are
then “flown” through the search space, moving at their respective velocities.

Optimization is achieved by each particle remembering at what position it
achieved the best evaluation of the function, or the particle’s “personal best”. Particles
also remember the best achieving position of their “neighborhood”. The neighborhood
for some particle A is a group of particles to which A belongs. This group can be, for
instance, topological (whatever particles are closest) or index-based throughout the
algorithm. It can consist of either a subset of the particle swarm (local neighborhood),
or the entire population (global neighborhood). The “neighborhood best” of a
neighborhood is the position that yielded the best evaluation by any particle in the
neighborhood.

At each iteration of the algorithm, the velocity of each particle is updated, using a
randomized attraction to both the particle best and the neighborhood best. This allows
particles to move towards areas of the search space that have yielded good results, and
in doing so, discover nearby better results. In this way, the particles will eventually
converge on possibly global optima. The idea for this type of behavior took
inspiration from the ways birds act while flying in a flock and searching for food.

2 Lab: Using PSO

2.1 Understanding the Main Loop
Download lab07.tar.gz from Moodle and unarchive it:

$ tar xvfz lab07.tar.gz

This will create one directory called webots which is used for part 2 of the lab. For
this first part of the lab you will need to work with SwarmViz, a PSO visualization
tool for educational purposes developed at DISAL (Jornod et al., 2015). To run this
visualizer go through the following steps:

1- In your lab07 folder clone the repository of SwarmViz located at

https://github.com/epfl-disal/SwarmViz.git by typing the following command in
the terminal (make sure you are in lab07 directory):

$ git clone https://github.com/epfl-disal/SwarmViz.git

https://github.com/epfl-disal/SwarmViz.git

Distributed Intelligent Systems and Algorithms Laboratory (DISAL) EPFL

FR, Distributed Intelligent Systems, Lab 7: PSO for Single Robot Systems 3

This will create a folder called SwarmViz in your current directory. You can
find more information about this package in the README.md file or in the opening
page of this repository on GitHub.

2- Go to the directory and run the configuration script located in the SwarmViz

folder by:

$ cd SwarmViz

$./config

$ make clean all

3- Run the program using this command :

$./bin/swarmviz &

4- Copy the doc folder in lab07 into the SwarmViz folder. You can launch the
documentation pages by typing (you should be in SwarmViz directory):

$ cd doc/html

$ firefox index.xhtml

You can refer to the README.md file for further documentation for this package.
You are now able to run the program as well as having access to the source code of
the software. Go to the SwarmViz/src/pso folder where you can find the relevant
files for the PSO algorithm. This code provides a complete implementation of PSO.

Q1 (5): Browse through the swarm and particle source and header files to get an

understanding of the structure of the code. Additionally, you can use the
documentation to understand what different parts of the code are doing.

2.2 PSO on the Sphere and Rastrigin Functions
We will explore how PSO behaves when applied to optimizing two different
functions: the Sphere and the Rastrigin function (see Figure 1).

Figure 1: The Sphere function (left) and the Rastrigin function (right)

The Sphere function is defined as follows:

https://github.com/epfl-disal/SwarmViz.git

Distributed Intelligent Systems and Algorithms Laboratory (DISAL) EPFL

FR, Distributed Intelligent Systems, Lab 7: PSO for Single Robot Systems 4

and the Rastrigin function as:

We want to minimize the functions, therefore the optimal value of both functions

is 0. In the optimization process, we want to find the set of xi that give the value of f
closest to 0 (given by xi = 0 for all i). The values for xi are initially randomly
distributed between -10.24 and 10.24. We will use PSO with index-based
neighborhood of a particle given by the three nearest particles on each side (e.g.,
particle 8 has neighborhood {5, 6, 7, 8, 9, 10, 11}) with particle 29 being next to
particle 0 (30 particles in total). We will optimize the two functions with n = 10, and,
therefore, ten dimensions of the vector representing each particle. In other words, a
particle is a set of 10 numbers, and the closer to 0 all the numbers become, the better
the performance. The maximum velocity of the particles is initially set to 0.5 and the
default inertia value should be 1.0. The default value of the relevant parameters are
reported in Table 1.

Table 1- Default values for PSO parameters used in SwarmViz

Parameter Name Default Value
Noise 0.00

Dimension of the search space 24
Number of particles 30

Minimum initial value -5.12
Maximum initial value 5.11

Maximum velocity of particles 5.12
Inertia 0.60

Maximum number of iterations 1500
Local (personal best) weight 2.00

Neighbor (neighborhood best) weight 2.00
Total number of neighbors 2

Before starting the optimization, click on the Plots tab on the right hand side

panel of SwarmViz graphical user interface (GUI). You can see a number of different
plot types. Activate only Fitness Landscape, Euclidian Distance and Fitness plots.
Take a look at the other tabs of the panel briefly. You will find where to change
different parameters of PSO along with a number of different benchmark functions
that can be optimized.

The three mentioned plots depict the 1) distribution of particles in the search

space, 2) the mean interparticle distance at each iteration for all particles in the swarm
(an indicator of compactness and convergence of the swarm), and 3) the average and
the best fitness of all the particles in each iteration respectively. Note that only two
dimensions of the fitness landscape are shown whereas our problem’s search space
could have many more dimensions. You can pause the simulation and zoom out on
this plot to get a more global view of the landscape.

Distributed Intelligent Systems and Algorithms Laboratory (DISAL) EPFL

FR, Distributed Intelligent Systems, Lab 7: PSO for Single Robot Systems 5

To start the optimization, choose the desired benchmark function and set it as the

fitness function in the dropdown box in the Swarm tab. Go to the Simulation tab and
click the Simulate button. Clicking this button again will cause the simulation to stop.
Keep in mind all the parameters of the problem (PSO parameters, fitness function
type and dimension, simulation parameters) are initialized to a default value unless
you modify them in the GUI before starting the optimization.

You can also see the best fitness value along with the coordinates of the particle

with the best fitness in the search space printed to the terminal for each step. You can
stop the simulation and zoom into each of the plots if needed. Additionally, you can
speed up the visualization by reducing the delay in the Simulation tab.

S2 (5): We will start from the Sphere function. Run the program with 10 iterations,

100 iterations, 1000 iterations, and 10000 iterations. You can modify the
iteration value in the Swarm tab. You can save the plots in a folder specified
as the Output directory in the Files tab of the visualizer for comparing the
results more easily.

Q3 (5): What do you observe in the final fitness? How many iterations do you think

will be necessary to get the exact answer? Why?

S4 (5): There is a variable that controls the maximum velocity that particles can

achieve in the simulation, which you can find under the Swarm tab. Using
1000 iterations, try varying maximum velocity from 0.5 to 4.0.

Q5 (5): How does the performance change?

It can be very inconvenient to have to tune maximum velocity to give the optimal
performance for a simulation. A feature that was developed for PSO soon after its
invention was an “inertia” coefficient. This was a coefficient typically less than 1
which is multiplied with the velocity at each iteration, in order to naturally slow
particles down without imposing a hard velocity threshold (so far you were running
the PSO with a value of 1 for inertia).

S6 (5): Run the program again, setting maximum velocity to 4.0 and the inertia

coefficient to 0.6.

Q7 (5): How does this modification of inertia affect the fitness? Make sure your

optimization runs for sufficient number of iterations (e.g., 1000).

Having found a good set of parameters that work on the Sphere function, let us
now select the Rastrigin function by choosing this function as the benchmark fitness
function in the Swarm tab. Keep the number of iterations set to 1000, maximum
velocity 4.0. As a reminder, the number of particles used in questions above was 30.

S8 (5): How would you set the inertia and number of particles in order to find the

optimal value for the Rastrigin function? Explain your choice and provide
numerical results of your tests.

Distributed Intelligent Systems and Algorithms Laboratory (DISAL) EPFL

FR, Distributed Intelligent Systems, Lab 7: PSO for Single Robot Systems 6

Hint: since the function has many local minima, look not only at the
performance of a run, but also the position of the best particle forming the
solution (its coordinates). Note that PSO is a stochastic algorithm, so it is
possible that not every run yields the optimal solution even when the
algorithm parameters are correctly selected.

Q9 (5): What type of neighborhood topology is used in the PSO implementation? You
can find this information in the swarm.cpp file. How would you justify this
choice? Can you think of other neighborhood types? What would be the best
neighbor topology for each of the Sphere and the Rastrigin function?

S10 (5): Try changing the neighborhood weight and neighborhood size for the two

functions, what value causes the optimization to perform better? How does
this affect the optimization process and which function is more sensitive to
this choice? Explain your choice and provide numerical results of your tests.

2.3 PSO for Evaluative Adaptation
We’ve established that PSO can do a good job of optimizing mathematical

functions. The next step is to test it in a more demanding environment, in particular in
the presence of noisy functions.

In “Evolution of Homing Navigation in a Real Mobile Robot” (Floreano and

Mondada, 1996), a GA was used to train a robot to move through a maze and avoid
obstacles. We will instead, use Webots to shape robotic controllers for the mobile
robots, evaluating the performance of PSO as the method for learning the parameters
of the controller. For the experiments in this lab, we use the e-puck robot instead of
the Khepera that was used in the original paper. The behavior we wish to achieve on
the robots is obstacle avoidance, the same as in Floreano and Mondada’s paper.

We have partially implemented the PSO algorithm in Webots for you. You can
find the code in /lab07/webots/controllers/pso_obs_sup/pso.c.

Q11 (2): Open the world file pso_obs.wbt in webots and compile all the controllers for

the robot and the supervisor. Browse through the files pso.c and
pso_obs_sup.c and read the comments to get an understanding of the
structure of the code and the way the candidate solutions are encoded. What
are the values of PSO parameters in these codes (e.g., dimension of the
search space, number of particles, etc.)?

I12 (8): The pso.c file is missing the speed and location update operations in the

main loop. You can take a look at SwarmViz/src/pso/swarm.cpp file
which uses the same concept to update speed and location. Implement this
change and modify the code of this part accordingly in the marked sections.
(Note: the inertia factor is not being passed as a function parameter to
pso(), just set it to a default value of 0.6, for now). Make sure you
understand the code.

Distributed Intelligent Systems and Algorithms Laboratory (DISAL) EPFL

FR, Distributed Intelligent Systems, Lab 7: PSO for Single Robot Systems 7

The worlds we are using here are simple walled arenas with no obstacles and one
e-puck robot. We use a two neuron, single-layer neural network to control the robot,
with proximity sensors as inputs and the motor speed as outputs. There are recursive
and lateral connections from the outputs of both neurons back into each other. The
controller we adapt is the set of weights for these neurons (8 proximity sensors + 2
recursive/lateral connections + 1 bias = 11 weights for each neuron => 22 weights
total).

I13 (10): What would be an appropriate fitness function for evaluating obstacle

avoidance behavior? Open the robot controller your_obs_con.c and
implement your fitness function in the designated portions of the code. The
default time for a single evaluation of fitness is ~30 s. (Note: you should try
to come up with a different fitness function from the one presented in class).

We will now test shaping of obstacle avoidance behavior using PSO. In the

following questions, you will be asked to run simulations that will take about 20 hours
of simulated time, and several minutes of real wall-clock time to complete. In order to
save time, you may want to look ahead to the next question to see whether it is
something which you can work on while you wait.

In the paper by Floreano and Mondada, the fitness of the controller was measured

with the equation:
)1)(1(iVVF −∆−=]1,0[,,, ∈∆ iVV

Where V is a measure of the average rotation speed of the two wheels over the
trial, ∆V is a measure of the average difference in wheel speed of the two wheels over
the trial, and i is the average activation value of the proximity sensor with the highest
activity. Each of these terms in the fitness function encourage the robot to go fast, go
straight, and not stay close to walls, respectively.

Distributed Intelligent Systems and Algorithms Laboratory (DISAL) EPFL

FR, Distributed Intelligent Systems, Lab 7: PSO for Single Robot Systems 8

S14 (5): Revert the world and select the obs_con as the robot controller. It
implements the above fitness function. Run the optimization again. How
does the behavior obtained now compare with the previous version using
your own fitness function?

S15_(5): Try varying the maximum particle velocity parameter defined in

pso_obs_sup.c. Choose values between 10 and 40. In the pso.c try to
change the value of the inertia that you have defined as requested in the
implementation question I8. Try varying this parameter between 0 and 1.
How is the performance affected?

Q16 (5): How would you estimate the performance in terms of fitness and computation
time for different number of particles, significantly lower (e.g., 7) and higher
(e.g., 40) than the dimension size? What value would be a good compromise?

Q17 (5): If you have a specific time budget, where do you put your evaluation effort:
number of iterations or larger particle swarm? Justify your answers.

Q18 (5): Look inside the code to find how the neighborhood is specified. There are

four different types of neighborhood defined and implemented in the code.
What does each of them do? Run the code for each type separately and
compare the behavior. Explain how the choice of the neighborhood type and
size should be for a given problem.

B19 (20): Now we want to optimize the weights of the neural network for wall
following behavior, instead of obstacle avoidance. Design a new fitness
function for this purpose. Open the world file pso_wall_following.wbt
in Webots and implement your new fitness function in the file
your_wall_following_controller.c. Note that the supervisor
pso_wall_following_sup.c uses the files pso.c and pso.h of the
previous questions, because the configuration of PSO remains the same.
However, other parameters of the optimization (e.g., duration of
optimization) can be modified in the supervisor.

Q20 (5): Why changing the optimization problem does not require any change in the
PSO configuration?

3 References
Jornod, G.; Di Mario, E.; Navarro, I.; Martinoli, A., "SwarmViz: An open-source

visualization tool for Particle Swarm Optimization," in 2015 IEEE Congress
on Evolutionary Computation (CEC), pp.179-186, 25-28 May 2015

Floreano D. and Mondada F., "Evolution of Homing Navigation in a Real Mobile
Robot", IEEE Trans. on System, Man, and Cybernetics: Part B, 26(3): 396-
407, 1996.

Pugh, J., Zhang, Y., and Martinoli, A. “Particle Swarm Optimization for
Unsupervised Robotic Learning”, In Proc. of the IEEE Swarm Intelligence
Symposium 2005, Pasadena, CA, pp. 92-99.

	1 Lab 7: PSO for Benchmark Functions and Single Robot Systems
	1.1 Office hours
	1.2 Information
	1.3 Optimization
	1.4 The Particle Swarm

	2 Lab: Using PSO
	2.1 Understanding the Main Loop
	2.2 PSO on the Sphere and Rastrigin Functions
	2.3 PSO for Evaluative Adaptation

	3 References

