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1 Lab 7: PSO for Benchmark Functions and Single Robot 
Systems 
This laboratory requires the following (the development tools are installed in 

GR B0 01 and GR C0 02 already): 
 

• C development tools (gcc, make, etc.) 
• Webots simulation software 
• Webots User Guide 
• Webots Reference Manual 
• SwarmViz 

 
Depending on your programming skills, the laboratory duration might require an 

effort of up to five hours although assistance will be provided in the computer rooms 
during a time window of three hours. Although this laboratory is not graded, we 
encourage you to take notes during the course of this laboratory to aid in preparing the 
final exam. A solution to this lab will be posted after the lab session. 

 

1.1 Office hours 
Additional assistance outside the lab period (office hours) can be requested using 

the dis-ta@groupes.epfl.ch mailing list. 
 

1.2 Information 
In the following text you will find several exercises and questions. 

• The notation Sx means that the question can be solved using only additional 
simulation or an experimental manipulation. 

• The notation Qx means that the question can be answered theoretically, 
without any simulation.The notation Ix means that the problem has to be 
solved by implementing a piece of code and performing a simulation or an 
experimental manipulation. 

• The notation Bx means that the question is optional and should be answered if 
you have enough time at your disposal. 
 

To prepare yourself for the exam and to allow you for better time planning during the 
exercise session, we show an indicative number of points for each exercise between 
parentheses. The combined total number of points for the laboratory or homework 
exercises is 100. 

 

1.3 Optimization 
In many instances, we want to find either the minimum or maximum value of 

some function. If the function in question is complex (e.g., non-convex, 
discontinuous, multiple peaks) or even unknown, it is often impossible to accomplish 
this task using exact methods. Furthermore, if the function parameter space is very 
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large, a systematic search of this space is often too computationally expensive. 
Therefore, a number of metaheuristic techniques have been developed to find near-
optimal solutions, such as Genetic Algorithms (GA) and Particle Swarm Optimization 
(PSO). 

1.4 The Particle Swarm 
To find minima/maxima, repeated evaluations of the function in question must be 

done at different points. A good optimization algorithm will use the information 
obtained from these evaluations to choose the locations of future evaluations, and 
eventually to decide where the minimum/maximum is. 

In PSO, a set of “particles” is initialized with a random position for each particle. 
Each particle is also assigned a random “velocity” in the search space. Particles are 
then “flown” through the search space, moving at their respective velocities. 

Optimization is achieved by each particle remembering at what position it 
achieved the best evaluation of the function, or the particle’s “personal best”. Particles 
also remember the best achieving position of their “neighborhood”. The neighborhood 
for some particle A is a group of particles to which A belongs. This group can be, for 
instance, topological (whatever particles are closest) or index-based throughout the 
algorithm. It can consist of either a subset of the particle swarm (local neighborhood), 
or the entire population (global neighborhood). The “neighborhood best” of a 
neighborhood is the position that yielded the best evaluation by any particle in the 
neighborhood. 

At each iteration of the algorithm, the velocity of each particle is updated, using a 
randomized attraction to both the particle best and the neighborhood best. This allows 
particles to move towards areas of the search space that have yielded good results, and 
in doing so, discover nearby better results. In this way, the particles will eventually 
converge on possibly global optima. The idea for this type of behavior took 
inspiration from the ways birds act while flying in a flock and searching for food. 

2 Lab: Using PSO  

2.1 Understanding the Main Loop 
Download lab07.tar.gz from Moodle and unarchive it: 
 

$ tar xvfz lab07.tar.gz 

This will create one directory called webots which is used for part 2 of the lab. For 
this first part of the lab you will need to work with SwarmViz, a PSO visualization 
tool for educational purposes developed at DISAL (Jornod et al., 2015). To run this 
visualizer go through the following steps: 
 
1- In your lab07 folder clone the repository of SwarmViz located at 

https://github.com/epfl-disal/SwarmViz.git  by typing the following command in 
the terminal (make sure you are in lab07 directory):  

 

$ git clone https://github.com/epfl-disal/SwarmViz.git  

https://github.com/epfl-disal/SwarmViz.git
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This will create a folder called SwarmViz in your current directory. You can 
find more information about this package in the README.md file or in the opening 
page of this repository on GitHub. 

 
2- Go to the directory and run the configuration script located in the SwarmViz 

folder by: 
 

$ cd SwarmViz 

$ ./config 

$ make clean all  

3- Run the program using this command : 
 

$ ./bin/swarmviz & 

4- Copy the doc folder in lab07 into the SwarmViz folder. You can launch the 
documentation pages by typing (you should be in SwarmViz directory): 
 

$ cd doc/html 

$ firefox index.xhtml 
 

You can refer to the README.md file for further documentation for this package. 
You are now able to run the program as well as having access to the source code of 
the software. Go to the SwarmViz/src/pso folder where you can find the relevant 
files for the PSO algorithm. This code provides a complete implementation of PSO. 
 
Q1 (5): Browse through the swarm and particle source and header files to get an 

understanding of the structure of the code. Additionally, you can use the 
documentation to understand what different parts of the code are doing. 

 

2.2 PSO on the Sphere and Rastrigin Functions 
We will explore how PSO behaves when applied to optimizing two different 
functions: the Sphere and the Rastrigin function (see Figure 1).  
 

 

Figure 1: The Sphere function (left) and the Rastrigin function (right) 

The Sphere function is defined as follows: 

https://github.com/epfl-disal/SwarmViz.git
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and the Rastrigin function as: 

 
We want to minimize the functions, therefore the optimal value of both functions 

is 0. In the optimization process, we want to find the set of xi that give the value of f 
closest to 0 (given by xi = 0 for all i). The values for xi are initially randomly 
distributed between -10.24 and 10.24. We will use PSO with index-based 
neighborhood of a particle given by the three nearest particles on each side (e.g., 
particle 8 has neighborhood {5, 6, 7, 8, 9, 10, 11}) with particle 29 being next to 
particle 0 (30 particles in total). We will optimize the two functions with n = 10, and, 
therefore, ten dimensions of the vector representing each particle. In other words, a 
particle is a set of 10 numbers, and the closer to 0 all the numbers become, the better 
the performance. The maximum velocity of the particles is initially set to 0.5 and the 
default inertia value should be 1.0. The default value of the relevant parameters are 
reported in Table 1. 

Table 1- Default values for PSO parameters used in SwarmViz 

Parameter Name Default Value 
Noise 0.00 

Dimension of the search space 24 
Number of particles 30 

Minimum initial value -5.12 
Maximum initial value 5.11 

Maximum velocity of particles 5.12 
Inertia 0.60 

Maximum number of iterations 1500 
Local ( personal best) weight 2.00 

Neighbor ( neighborhood best) weight 2.00 
Total number of neighbors 2 

 
Before starting the optimization, click on the Plots tab on the right hand side 

panel of SwarmViz graphical user interface (GUI). You can see a number of different 
plot types. Activate only Fitness Landscape, Euclidian Distance and Fitness plots. 
Take a look at the other tabs of the panel briefly. You will find where to change 
different parameters of PSO along with a number of different benchmark functions 
that can be optimized. 

 
The three mentioned plots depict the 1) distribution of particles in the search 

space, 2) the mean interparticle distance at each iteration for all particles in the swarm 
(an indicator of compactness and convergence of the swarm), and 3) the average and 
the best fitness of all the particles in each iteration respectively. Note that only two 
dimensions of the fitness landscape are shown whereas our problem’s search space 
could have many more dimensions. You can pause the simulation and zoom out on 
this plot to get a more global view of the landscape. 
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To start the optimization, choose the desired benchmark function and set it as the 

fitness function in the dropdown box in the Swarm tab. Go to the Simulation tab and 
click the Simulate button. Clicking this button again will cause the simulation to stop. 
Keep in mind all the parameters of the problem (PSO parameters, fitness function 
type and dimension, simulation parameters) are initialized to a default value unless 
you modify them in the GUI before starting the optimization.  

 
You can also see the best fitness value along with the coordinates of the particle 

with the best fitness in the search space printed to the terminal for each step. You can 
stop the simulation and zoom into each of the plots if needed. Additionally, you can 
speed up the visualization by reducing the delay in the Simulation tab.  

 
S2 (5): We will start from the Sphere function. Run the program with 10 iterations, 

100 iterations, 1000 iterations, and 10000 iterations. You can modify the 
iteration value in the Swarm tab. You can save the plots in a folder specified 
as the Output directory in the Files tab of the visualizer for comparing the 
results more easily. 

 
Q3 (5): What do you observe in the final fitness? How many iterations do you think 

will be necessary to get the exact answer? Why? 
 
S4 (5): There is a variable that controls the maximum velocity that particles can 

achieve in the simulation, which you can find under the Swarm tab. Using 
1000 iterations, try varying maximum velocity from 0.5 to 4.0.  

 
Q5 (5): How does the performance change? 
 

It can be very inconvenient to have to tune maximum velocity to give the optimal 
performance for a simulation. A feature that was developed for PSO soon after its 
invention was an “inertia” coefficient. This was a coefficient typically less than 1 
which is multiplied with the velocity at each iteration, in order to naturally slow 
particles down without imposing a hard velocity threshold (so far you were running 
the PSO with a value of 1 for inertia). 
 
S6 (5): Run the program again, setting maximum velocity to 4.0 and the inertia 

coefficient to 0.6. 
 
Q7 (5):  How does this modification of inertia affect the fitness? Make sure your 

optimization runs for sufficient number of iterations (e.g., 1000).  
 

Having found a good set of parameters that work on the Sphere function, let us 
now select the Rastrigin function by choosing this function as the benchmark fitness 
function in the Swarm tab. Keep the number of iterations set to 1000, maximum 
velocity 4.0. As a reminder, the number of particles used in questions above was 30. 
 
S8 (5): How would you set the inertia and number of particles in order to find the 

optimal value for the Rastrigin function? Explain your choice and provide 
numerical results of your tests.  
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Hint: since the function has many local minima, look not only at the 
performance of a run, but also the position of the best particle forming the 
solution (its coordinates). Note that PSO is a stochastic algorithm, so it is 
possible that not every run yields the optimal solution even when the 
algorithm parameters are correctly selected. 
 

Q9 (5): What type of neighborhood topology is used in the PSO implementation? You 
can find this information in the swarm.cpp file. How would you justify this 
choice? Can you think of other neighborhood types? What would be the best 
neighbor topology for each of the Sphere and the Rastrigin function? 

 
S10 (5): Try changing the neighborhood weight and neighborhood size for the two 

functions, what value causes the optimization to perform better? How does 
this affect the optimization process and which function is more sensitive to 
this choice? Explain your choice and provide numerical results of your tests.  
 

 

2.3 PSO for Evaluative Adaptation 
We’ve established that PSO can do a good job of optimizing mathematical 

functions. The next step is to test it in a more demanding environment, in particular in 
the presence of noisy functions. 

 
In “Evolution of Homing Navigation in a Real Mobile Robot” (Floreano and 

Mondada, 1996), a GA was used to train a robot to move through a maze and avoid 
obstacles. We will instead, use Webots to shape robotic controllers for the mobile 
robots, evaluating the performance of PSO as the method for learning the parameters 
of the controller. For the experiments in this lab, we use the e-puck robot instead of 
the Khepera that was used in the original paper. The behavior we wish to achieve on 
the robots is obstacle avoidance, the same as in Floreano and Mondada’s paper. 

We have partially implemented the PSO algorithm in Webots for you. You can 
find the code in /lab07/webots/controllers/pso_obs_sup/pso.c.  

 
Q11 (2): Open the world file pso_obs.wbt in webots and compile all the controllers for 

the robot and the supervisor. Browse through the files pso.c and 
pso_obs_sup.c and read the comments to get an understanding of the 
structure of the code and the way the candidate solutions are encoded. What 
are the values of PSO parameters in these codes (e.g., dimension of the 
search space, number of particles, etc.)? 

 
I12 (8): The pso.c file is missing the speed and location update operations in the 

main loop. You can take a look at SwarmViz/src/pso/swarm.cpp file 
which uses the same concept to update speed and location. Implement this 
change and modify the code of this part accordingly in the marked sections. 
(Note: the inertia factor is not being passed as a function parameter to 
pso(), just set it to a default value of 0.6, for now). Make sure you 
understand the code. 
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The worlds we are using here are simple walled arenas with no obstacles and one 
e-puck robot. We use a two neuron, single-layer neural network to control the robot, 
with proximity sensors as inputs and the motor speed as outputs. There are recursive 
and lateral connections from the outputs of both neurons back into each other. The 
controller we adapt is the set of weights for these neurons (8 proximity sensors + 2 
recursive/lateral connections + 1 bias = 11 weights for each neuron => 22 weights 
total). 

 
 

 
I13 (10): What would be an appropriate fitness function for evaluating obstacle 

avoidance behavior? Open the robot controller your_obs_con.c and 
implement your fitness function in the designated portions of the code. The 
default time for a single evaluation of fitness is ~30 s. (Note: you should try 
to come up with a different fitness function from the one presented in class). 

 
We will now test shaping of obstacle avoidance behavior using PSO. In the 

following questions, you will be asked to run simulations that will take about 20 hours 
of simulated time, and several minutes of real wall-clock time to complete. In order to 
save time, you may want to look ahead to the next question to see whether it is 
something which you can work on while you wait. 

 
In the paper by Floreano and Mondada, the fitness of the controller was measured 

with the equation: 
)1)(1( iVVF −∆−= ]1,0[,,, ∈∆ iVV  

Where V is a measure of the average rotation speed of the two wheels over the 
trial, ∆V is a measure of the average difference in wheel speed of the two wheels over 
the trial, and i is the average activation value of the proximity sensor with the highest 
activity. Each of these terms in the fitness function encourage the robot to go fast, go 
straight, and not stay close to walls, respectively.  
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S14 (5): Revert the world and select the obs_con as the robot controller. It 
implements the above fitness function. Run the optimization again. How 
does the behavior obtained now compare with the previous version using 
your own fitness function? 

 
S15_(5): Try varying the maximum particle velocity parameter defined in 

pso_obs_sup.c. Choose values between 10 and 40. In the pso.c try to 
change the value of the inertia that you have defined as requested in the 
implementation question I8. Try varying this parameter between 0 and 1. 
How is the performance affected? 

Q16 (5): How would you estimate the performance in terms of fitness and computation 
time for different number of particles, significantly lower (e.g., 7) and higher 
(e.g., 40) than the dimension size? What value would be a good compromise?  

Q17 (5): If you have a specific time budget, where do you put your evaluation effort: 
number of iterations or larger particle swarm? Justify your answers. 

 
Q18 (5): Look inside the code to find how the neighborhood is specified. There are 

four different types of neighborhood defined and implemented in the code. 
What does each of them do? Run the code for each type separately and 
compare the behavior. Explain how the choice of the neighborhood type and 
size should be for a given problem.  

B19 (20): Now we want to optimize the weights of the neural network for wall 
following behavior, instead of obstacle avoidance. Design a new fitness 
function for this purpose. Open the world file pso_wall_following.wbt 
in Webots and implement your new fitness function in the file 
your_wall_following_controller.c. Note that the supervisor 
pso_wall_following_sup.c uses the files pso.c and pso.h of the 
previous questions, because the configuration of PSO remains the same. 
However, other parameters of the optimization (e.g., duration of 
optimization) can be modified in the supervisor.  

Q20 (5): Why changing the optimization problem does not require any change in the 
PSO configuration? 

3 References 
Jornod, G.; Di Mario, E.; Navarro, I.; Martinoli, A., "SwarmViz: An open-source 

visualization tool for Particle Swarm Optimization," in 2015 IEEE Congress 
on Evolutionary Computation (CEC), pp.179-186, 25-28 May 2015 

Floreano D. and Mondada F., "Evolution of Homing Navigation in a Real Mobile 
Robot", IEEE Trans. on System, Man, and Cybernetics: Part B, 26(3): 396-
407, 1996.  

Pugh, J., Zhang, Y., and Martinoli, A. “Particle Swarm Optimization for 
Unsupervised Robotic Learning”, In Proc. of the IEEE Swarm Intelligence 
Symposium 2005, Pasadena, CA, pp. 92-99. 


	1 Lab 7: PSO for Benchmark Functions and Single Robot Systems
	1.1 Office hours
	1.2 Information
	1.3 Optimization
	1.4 The Particle Swarm

	2 Lab: Using PSO
	2.1 Understanding the Main Loop
	2.2 PSO on the Sphere and Rastrigin Functions
	2.3 PSO for Evaluative Adaptation

	3 References

