
Distributed Intelligent Systems and Algorithms Laboratory (DISAL) EPFL

DD, Distributed Intelligent Systems, Lab 3: Introduction to the e-puck robot 1

1 Lab 3: Introduction to the e-puck Robot

This laboratory requires the following (the development tools are installed in GR B0 01

and GR C0 02 already):

• C development tools (gcc, make, etc.)

• C30 programming tools for the e-puck robot

• The “development tree” which is a set of files required by the C30 compiler

• One e-puck robot, one Bluetooth USB dongle, one battery

• Three paper “walls” and six stands

• The document “Introduction to the e-puck robot”

Depending on your programming skills, the laboratory duration might require an effort

of up to five hours although assistance will be provided in the computer rooms during

a time window of three hours. In case you would like to continue to work with hardware

beyond the assisted exercise hours, talk to the TAs about returning the hardware later.

We encourage you to take notes during the course of this laboratory to aid in the exams.

A solution will be posted a few days after the lab session.

1.1 Office hours

Additional assistance outside the lab period (office hours) can be requested using

the dis-ta@groupes.epfl.ch mailing list.

1.2 Information

In the following text you will find several exercises and questions.

• The notation Sx means that the question can be solved using only additional

simulation or an experimental manipulation.

• The notation Qx means that the question can be answered theoretically, without

any simulation or an experimental manipulation.

• The notation Ix means that the problem has to be solved by implementing a piece

of code and performing a simulation or an experimental manipulation.

• The notation Bx means that the question is optional and should be answered if

you have enough time at your disposal.

To prepare yourself for the exam and to allow you for better time planning during

the exercise session, we show an indicative number of points for each exercise

between parentheses. The combined total number of points for the laboratory or

homework exercises is 100.

.

1.3 General remarks and documentation

In this lab, you are working with the e-puck robot, a small mobile robot developed

to perform desktop experiments. For more information about the e-puck, please read

the document: “Introduction to the e-puck robot”.

mailto:dis-ta@groupes.epfl.ch

Distributed Intelligent Systems and Algorithms Laboratory (DISAL) EPFL

DD, Distributed Intelligent Systems, Lab 3: Introduction to the e-puck robot 2

1.4 Controlling the e-puck robot

In this lab, we will control the e-puck robot by uploading a program. This is done

by cross-compiling a program for the e-puck on your computer. Cross compilation is

the process of compiling and building executable code for a platform other than the one

on which the compiler is running. This can be useful for platforms upon which it is not

feasible to do the compiling, such as microcontrollers that do not support an operating

system. After creating the executable, you will then create a connection between your

computer and the robot, and finally upload the program onto the robot’s flash memory

through the connection, using a wireless bootloader. The wireless bootloader code is

already programmed on all the robots. The executable (a .hex file) runs directly on the

e-puck. The procedure to do this will be explained in detail in the following paragraphs.

2 Lab: Getting familiar with the e-puck

2.1 Preparing software and hardware

Before starting the lab, we need to set up the experimental environment. Follow the

instructions below to prepare hardware and software.

2.1.1 Preparing the software

You will need to download the e-puck development environment onto your computer.

Copy these files in your home directory by doing the following:

a) First, create a directory for e-puck related files.

(example: /home/user/myfiles)

b) Now go to this directory and download (clone) the necessary files from the e-

puck git repository by typing the following, in one line:

$ git clone https://disalgitn.epfl.ch/epuck/epuck.git

The download might take a few minutes.

c) Inside the epuck/EpuckDevelopmentTree/ directory, you will find a library/

and a program/ directory. In order to use the e-puck library code that you just

downloaded, it must be compiled. Do this by going to the library/ directory

and executing make:

$ cd epuck/EpuckDevelopmentTree/library

$ make clean

$ make

Your e-puck development environment is now ready.

2.1.2 Preparing the hardware

Prepare your hardware setup now:

1. Plug in the Bluetooth USB dongle into your desktop computer.

2. Place the battery in the robot with the serial number facing up (such that it is not

visible when then battery is plugged in).

3. Switch the robot on.

Distributed Intelligent Systems and Algorithms Laboratory (DISAL) EPFL

DD, Distributed Intelligent Systems, Lab 3: Introduction to the e-puck robot 3

4. Check your robot number written on a sticker at the front of the robot.

My robot number is : ………………

In the remainder of this lab, we assume that your robot ID is 999. Make sure to replace

999 with the number of your robot.

2.2 Sensors and Odometry

Before doing the following exercises, you will need to extract the lab archive by

executing tar xvfz lab03.tar.gz in a terminal.

We will start with some questions which should allow you to get a feeling of working

with real hardware in general, and the e-puck in particular. To do this, you will upload

the sercom program onto the e-puck, and run the minicom program on your computer.

Minicom is a small terminal program to communicate with a device over a serial link.

Since the e-puck Bluetooth protocol emulates a serial link, we can use this program to

chat with the e-puck. Notice the small orange LED which indicates the Bluetooth

connection being active.

Navigate to the directory lab03/ and upload sercom.hex onto the robot:

$ epuckupload -f sercom.hex 999

Note:Before executing the previous command, do not forget to get the proper access

rights for the Bluetooth port in your terminal, by typing:

$ ssh localhost

And provide your user password.

As soon as dots appear on your screen ($) press the blue reset button on the

robot. This will start writing the program to the e-puck memory. Now stars will appear

on your screen, indicating that the robot is being programmed ($**

**************). When no more stars appear, the robot has finished

programming. You will see the following message in your terminal:

[/dev/rfcomm999] Transmission of sercom.hex complete!

Now establish a communication channel with your e-puck and then start minicom.

The following line establishes a serial connection first (via epuckconnect 999)

and then immediately launches minicom after the connection has been established:

$ epuckconnect 999 && minicom

Now press the reset button on the robot. Your terminal should display:

WELCOME to the SerCom protocol on e-Puck

the EPFL education robot type ‘H’ for help

With Ctrl-A Z (hold the Ctrl key while typing A, then release the Ctrl and

A key and type Z) you get to the main menu of minicom. Configure your terminal to

Distributed Intelligent Systems and Algorithms Laboratory (DISAL) EPFL

DD, Distributed Intelligent Systems, Lab 3: Introduction to the e-puck robot 4

have a local echo, i.e. to display the characters you type, by typing E <Enter> in

your minicom terminal.

S1 : Enter H <Enter> in your minicom terminal. Your robot will answer with

all the commands it understands through the serial line.

Q2 (5): Type N <Enter> in your minicom terminal. Then put a finger in front of one

of the IR sensors and type N <Enter> again. What are you measuring? When

was the value higher?

Q3 (5): Put different objects (white sheet of paper, dark objects, etc.) at the same

distance in front of the sensor and take a measurement for each. Explain why

the values are different, even though the distance is the same.

Q4 (5): Although not endowed with optical encoders, the e-puck wheels are driven

using stepper motors, which allow for adjusting the precise wheel position. A

stepper motor (or step motor) is a brushless DC electric motor that divides a

full rotation into a number of equal steps. The motor's position can then be

commanded to move and hold at one of these steps without any feedback

sensor.

 Check the possible commands list. You can set the wheel speed using the d,x,x

command, which sets the value by which an internal step counter increases per

second.

 Check the possible commands list. You can set the step counter for both motors

to 0 using the command p,0,0.

 Give a sequence of commands which you have to enter at the right time such

that the robot approximately moves along the following line.

Note: the small red LED close to the on/off switch signals the battery level. In case it

turns on when the wheels are rotating, this will indicate that your battery level is low

and the robot might show unpredicted behaviors. Please change the battery.

S5: Stop the motors and execute the following commands
p,0,0

d,200,-200

 While the e-puck is moving, press Q <Enter> from time to time.

Distributed Intelligent Systems and Algorithms Laboratory (DISAL) EPFL

DD, Distributed Intelligent Systems, Lab 3: Introduction to the e-puck robot 5

Q6 (5): What do the values returned by Q mean? By how much does Q increase per

second?

Q7 (5): The circumference of the e-puck wheel is about 13 cm. The stepper motor

travels 1000 steps per wheel rotation. The distance between the two wheels is

53 mm. Compute the proper command for wheel speed such that the center of

your e-puck travels on a full circle of 15.9 cm radius within 25.62 seconds.

S8: Execute the computed command.

Q9 (5): Try to increase the wheel speeds such that your e-puck travels the same circle

faster.

S10: Execute the computed commands and observe what happens when you try to

travel too fast and try to explain it.

You can now quit minicom by typing Ctrl-A Q.

2.3 Obstacle Avoidance

In the previous lab, we introduced the Braitenberg robot controller. In this section,

you will run the Braitenberg obstacle avoidance algorithm on the e-puck itself.

S11: Within your lab03 directory, type the following commands to program your

robot with the Braitenberg obstacle avoidance program:
cd obstacleavoidance/

epuckupload -f obstacleavoidance.hex 999

 Do not forget to press the blue reset button on the e-puck as soon as the dots

appear on the screen (stars indicate that program is being uploaded). Now, set

up the arena, put the robot inside and observe it doing obstacle avoidance.

S12: Do the same for obstacleavoidance_log. This code differs in three ways from

the previous algorithm:

• The output of the infrared sensors is passed through a log function. Since

the infrared sensors output decreases exponentially with the distance, this

makes the modified sensors output a linear function of the distance. The

input values to the Braitenberg would then be a linear function of the

distance to the obstacle.

• An average over 10 samples is computed in order to reduce measurement

noise.

• The sensors are calibrated by taking a series of measurements at the

beginning. Therefore, make sure that there is no obstacle around when you

switch on (or reset) the e-puck.

Q13(5): What differences in obstacle avoidance behavior do you observe between the

two algorithms? Consider in particular the smoothness of the behavior.

Q14(5): Important: in the Makefile, make sure to write the correct path to your e-

puck library. You can get the correct path by checking the “properties”

of the desired folder. Now open obstacleavoidance_log/main.c and modify

the algorithm such that it averages over 1000 instead of 10 samples. Recompile

Distributed Intelligent Systems and Algorithms Laboratory (DISAL) EPFL

DD, Distributed Intelligent Systems, Lab 3: Introduction to the e-puck robot 6

obstacle-avoidance_log.hex by typing make clean and then make in that

folder and upload it. Does this improve the robot’s behavior? Explain what

happens.

I15(10): There are also other ways of programming an obstacle avoidance controller.

Write a simple rule-based, i.e. if “condition_k” satisfied, then do “action_k”,

obstacle avoidance algorithm, based on the skeleton provided in

rulebased/main.c. Once you have finished programming, compile and upload

your program, and test it on the robot.

Q16(10): In your opinion, what are the advantages and disadvantages of the Braitenberg

controller with respect to the rule-based controller? If you have time, test both

your obstacle avoidance algorithms in a U-obstacle such as the one you saw in

the previous lab. You can build a U-obstacle using extra white walls.

The Braitenberg principle can also be used to program an object following

algorithm: instead of avoiding obstacles, the e-puck is supposed to follow an object

(e.g., your hand) in front of it.

B17(10): Find a simple way of modifying the Braitenberg obstacle avoidance algorithm

to produce object following behavior. We prepared the folder objectfollowing

for you with a copy of the obstacleavoidance program.

Make the necessary modifications in objectfollowing, compile (make clean;

make), upload (epuckupload -f objectfollowing.hex 999) and test

your algorithm.

1.1 Dead-reckoning navigation

This exercise will demonstrate dead-reckoning on the e-puck and the effects of bad

calibration.

Q18(5): Open the file drnavigation/main.c and try to understand how the code works.

There are three functions which are relevant to the dead-reckoning navigation.

e_set_dr_position() sets the position at which the robot thinks it is. By

calling e_set_dr_position(0,0,0) the robot thinks it is at the origin of

a local coordinate system pointing into the direction of the y-axis. e_do_dr()

reads the number of steps each motor took since the last call of e_do_dr()

and computes the new dead-reckoned position based on the previous position

(determined during the last call of e_do_dr()) and the motor steps.

e_get_dr_position(&dr_x,&dr_y,&dr_theta) retrieves the actual

dead-reckoned position. First the motor speed is set to 300 for both motors so

that the e-puck goes forward. Then the dead-reckoned position is continuously

updated e_do_dr()and read until the robot has traveled the desired distance.

Similarly the robot turns 180 degrees, travels the same distance in the opposite

direction and turns another 180 degrees. At the end of the program’s execution

the robot should be in the starting position and orientation (="pose").

Distributed Intelligent Systems and Algorithms Laboratory (DISAL) EPFL

DD, Distributed Intelligent Systems, Lab 3: Introduction to the e-puck robot 7

S19(5): Make sure the robot has enough space to travel 20 cm or more forward. Using

a pencil mark the starting position on the table. Compile the program, upload

and execute it.

S20(10):Notice how the robot does not really return very well to the starting position.

This is because the distance between the wheels in centimeters and steps

traveled per wheel rotation are not properly calibrated. Hint: you can compare

the distance which the robot traveled by comparing it to the short side of an A4

paper which is about 20 cm.

Open the file EpuckDevelopmentTree/library/motor_led/e_motors.h. In line 56

and 57 you will find the two #define statements

#define STEPS_PER_M 4443

#define WHEEL_DISTANCE 0.060

where the two relevant values are defined. Looking at how the e-puck went

compared to how it should have and looking at the effect of the wheel distance

on the dead-reckoning computation (lecture notes), which of the following set

of #define statements probably leads to the best result? Try to solve it by

analyzing the dependencies between the STEPS_PER_M and

WHEEL_DISTANCE value and the dead-reckoned distance traveled and angle

turned. Verify it by modifying the code accordingly, recompiling and running

the robot. Remember that every time you modify something in

EpuckDevelopmentTree/library/motor_led/e_motors.h you need to rebuild the

library by going into EpuckDevelopmentTree/library/ and execute make clean

and then make. Do this before recompile drnavigation/main.c.

a.)

#define STEPS_PER_M 10237

#define WHEEL_DISTANCE 0.053

b.)
#define STEPS_PER_M 7767

#define WHEEL_DISTANCE 0.053

c.)
#define STEPS_PER_M 7767

#define WHEEL_DISTANCE 0.060

1.2 Feature-based navigation

When dead reckoning is properly calibrated, the e-puck is able to return to its initial

position really well; however, after running for a while, it will eventually drift quite a

bit, due to accumulation of unavoidable small errors. One way to make sure that we get

back to the right position every time is by using very basic featured-based navigation.

The following experiment will demonstrate dead-reckoning with and without

correction through feature observation. In order to better observe the effect of the drift

we put the robot in a corridor and let it use its infrared sensors to not touch the walls.

This way the robot will not drift in the cross-corridor direction and we can better

observe the drift in the along-corridor direction.

Distributed Intelligent Systems and Algorithms Laboratory (DISAL) EPFL

DD, Distributed Intelligent Systems, Lab 3: Introduction to the e-puck robot 8

S21(5): Set up the e-puck and three walls as shown in the figure below. The e-puck

should have about 5 mm distance to each wall with the front of the robot (where

the camera is) pointing to the exit of the corridor.

First you need to make sure that your dead-reckoning is properly calibrated.

Open the file EpuckDevelopmentTree/library/motor_led/e_motors.h and set

line 56 and 57 to

#define STEPS_PER_M 7767

#define WHEEL_DISTANCE 0.053

Make sure you recompile the library by executing make and then make

clean in EpuckDevelopmentTree/library/. Compile and upload the file

featurenavigation/main.c. This code will make the e-puck go forward for 20 cm

then turn 180 degrees go forward 20 cm again and turn another 180 degrees.

After uploading the program, push the RESET button. This will make the

program start. At the beginning of the program there is a 5 second pause before

the robot starts. This will give you enough time to properly place the robot in

the corridor.

After the robot starts it will execute the sequence (go 20 cm→ turn 180° → go

20 cm→ turn 180°) infinitely many times, but after a while, enough dead

reckoning error will have accumulated such that the robot will start pushing

the back wall. Let the robot go back and forth a few times and observe the

drift.

I22(5): Now we want to use the back wall as a feature each time we are next to it. We

will do this by developing a function that measures the distance to the wall

(i.e., the feature) and adjust the robot’s position such that it is the same every

time the robot finishes going back and forth. Open the file

featurenavigation/main.c and look for the already defined function align.

First, remove the comments (“//”) where this function is called in the main

function. Then, fill the contents of function align, so that it does the

described behavior. Recompile, re-upload, and set the robot in the corridor

again, just as in the previous figure.

Distributed Intelligent Systems and Algorithms Laboratory (DISAL) EPFL

DD, Distributed Intelligent Systems, Lab 3: Introduction to the e-puck robot 9

Hint: Note, that function align accepts an argument (ref_point) which is

the sensor value (or the distance) that the robot measures to the wall when it is

initially placed in the corridor.

Hint: The sensor measurement after the robot having executed the back and

forth behavior is already implemented in the function.

