Distributed Intelligent Systems

WS 2018-2019

Instructor: Alcherio Martinoli

Guest lecturers: Duarte Dias, Ali Marjovi

Teaching assistants: Duarte Dias (Head TA), Faêzeh Rahbar (TA), Ali Marjovi (TA), Anwar Quraishi (TA)

Support staff: Cyrill Baumann, Ahmed Saadallah (help TA), Zeynab Talebpour, Alicja Wasik

Course Website: https://disal.epfl.ch/teaching/distributed_intelligent_systems/

1 Credits and Workload

Distributed Intelligent Systems distributes 5 ECTS. According to the European Commission guidelines, 1 ECTS is equivalent to up to 30 h of workload. Therefore the total workload for Distributed Intelligent Systems will be about 150 h over the whole semester. The approximate breakdown of the workload is 60 h for lecture attendance and exam preparation, 45 h for exercises (lab attendance and verification test, preparation time included), and 45 h for carrying out, documenting, and defending a course project.

2 Grade

The final grade for Distributed Intelligent Systems will take into account the performance in the final written exam as well as in the lab verification test. The final written exam will last 180 minutes and will involve multiple topics covered during the course (lecture, exercises, and primary handouts). 50% of the grade will be acquired during the semester, based on the performances in the lab verification test (20%) as well as in the course project (30%, specific evaluation coefficients for this effort will be communicated in a timely fashion); the other 50% of the grade will be based on the performance in the final exam. The weight coefficients used in the calculation of the aggregated grade are estimated based on the relative effort needed to prepare one or the other checkpoint.

3 Reading

Distributed Intelligent Systems does not follow a specific course book. Weekly reading material will be exclusively made available in electronic format, downloadable from the Moodle server (hyperlinked also from the web site of the course, under “Student Area”), typically the week before a given lecture and exercise session. Access to this material will be limited to people enrolled in the class and controlled via username and password. Most of this material is copyrighted and therefore it should exclusively be used for course purposes.

For this edition, the reading material has been classified in primary and secondary reading. Primary reading material will be covered to large extent during the lecture: it represents therefore a good complement to slides. On average, the primary reading material will consist of about 50 single-column pages per week (selected book sections and chapters, conference and journal papers, technical reports). Secondary reading material is only briefly mentioned during the lecture, typically because of one specific aspect complementing the information of the core
messages. Availability of this material on Moodle can facilitate curious students to look more into such information. Finally, for students interested in a deeper understanding of specific topics, further tertiary reading pointers are suggested at the end of each lecture notes.

Note that in any case the handouts represent a loosely coordinated literature body: some redundancy is possible and their content might not exhaustively discussed in the lecture, although students attending the lecture will get good guidance on the relevance of specific reading material.

4 Lecture Notes

Lecture will be given with the help of a LCD projector and a black board, when appropriate. Preliminary lecture notes will be available on the course web site possibly shortly before a given lecture (typically Monday evening), in PDF format. No e-mail notification will be send for such posting operation. Definitive lecture notes will be available after a given lecture in timely fashion, with an e-mail notification through the Moodle forum.

5 Labs and Verification Test

Each week, with the exception of the first week (lecture instead of exercises) and three weeks mainly dedicated to the course project (kick-off session, pre-submission assistance session, and final defense), there will be either a three hour lab or a lab verification test (see course outline below). The course will involve in total nine lab assignments and one lab verification test (in the computer room). Solutions for lab assignments will be distributed a few days after a given exercise session. The lab verification test will include material covered in the first five lab sessions. The submitted solutions of the lab verification test will be reviewed individually and will be available for download on the Moodle server in timely fashion (up to three weeks after the lab verification test). Possible discussions of grading and evaluation should take place during office hours of the TAs and not during the lab sessions.

The assignment of labs will be made available at the beginning of the week of a given lab session via the Moodle server, in pdf format. At the beginning of each lab session, a mini-tutorial of typically 5-10 minutes will be given by the main designer of the lab exercise. The corresponding slides will be made available on the exercise page after the lab session.

No specific office hours of individual TAs will be posted for lab and lecture topics but requests of meeting with a TA (including a meeting in the computer room) can be submitted anytime using the course e-mail list (dis-ta@groupes.epfl.ch).

6 Course Project

Distributed Intelligent Systems involves a 45h course project (this includes reading, implementation, reporting, oral defense of the project, and reviewing the report of another student team). All teaching assistants will serve as project supervisors. For this edition, the project topic will be unique for all students. Detailed information will be communicated during the eighth week, at the dedicated kick-off session. Projects will be carried out in groups of four (default) or three (if needed) students belonging as much as possible to different teaching sections or programs (at least two different sections will have to be represented in the team). The student teams will be organized during the seventh week, based on the preferences of the students. Each of the team members will have to defend part of the project in front of the audience. During the course project period, all project supervisors will make available one dedicated office hour per week. No further office hours will be made available upon request for the course project. Some team aggregation per office hour will take place during the seventh week in order to ensure a proper workload allocation for teaching assistants and feasible attendance for the students. Project supervisors will set a specific milestone for submitting an
intermediate, ungraded report in order to ensure timely progress. Further details on this work plan will be available in a timely fashion.

Each student team will also be asked to serve as a reviewer for another team and invited to ask questions during the defense session. Reviewers will receive the technical report of another team one or two days before their defense.

The final course project report will be due by the thirteen week of the semester while the oral defense of the project will happen during the last week of the semester, during lecture and exercise hours of the course. Additional details about the project defense and reporting will be distributed in timely fashion.

7 Collaboration Policy

Unless otherwise noted, students can collaborate with their fellow students on the lab assignments, have to work individually during the lab verification test and final written exam, and are encouraged to efficiently collaborate with their team members during the course project.

8 Course Syllabus

WEEK 1 – September 18 and 29

Lecture – 5 h (Tue in ME B331 and Wed in SG 0213)
Organization meeting, timetable. Overview of the course. Introduction to Swarm Intelligence (SI) and key principles (e.g., self-organization, stigmergy), natural and artificial examples, computational and embedded SI. Foraging, trail laying/following mechanisms. Open-space, multi-source foraging experiments: biological data and microscopic models. From real to virtual ants: Ant System (AS), the first combinatorial optimization algorithm based on ant trail/following principles. Application to a classical operational research problem: the Traveling Salesman Problem (TSP).

Reading
Primary
- Bonabeau E., Dorigo M., and Theraulaz G., “Swarm Intelligence: From Natural to Artificial Systems”, SantaFe Studies in the Sciences of Complexity, Oxford University Press, 1999, Ch. 1 (pp.1-23) and Ch. 2 (pp. 25-36 and 39-56).

Secondary

No exercises

WEEK 2 – September 25 and 26

Lecture – 2 h
From AS to Ant Colony Optimization (ACO). Ant-based algorithms (ABC, Ant-Net) applied to routing in telecommunication networks.

Reading
Primary

Secondary

Lab 1 – 3 h
Trail laying and following mechanisms, emphasizing SI concepts; Ant Colony Optimization.

WEEK 3 – October 2 and 3; guest lecturer: Duarte Dias

Lecture – 2 h
Introduction to mobile robotics: basic hardware and software concepts centered around the differential drive vehicle used in the course (e-puck) and the high-fidelity robotic simulator (Webots). Introduction to control architecture for mobile robots with special focus on reactive control architectures.

Reading

Primary

Secondary

Lab 2 – 3 h
Introduction to Webots, a high-fidelity robotic simulator. E-copies of the Webots user manual will be available.

WEEK 4 – October 9 and 10

Lecture – 2 h
Localization methods in mobile robotics: positioning systems, odometry-based and feature-based localization. Sources of localization uncertainties and corresponding handling methods for mobile robots.

Reading

Primary
- Siegwart R. and Nourbakhsh I. R., “Introduction to Autonomous Mobile Robots”, MIT Press, 2004, Ch. 3 (pp. 47-53), Ch. 4 (pp. 145-154), Ch. 5 (pp. 181-200).

Secondary
Lab 3 – 3 h
Introduction to the e-puck robot. Illustrate key concepts of the course for basic behavior using different reactive control architectures (Artificial Neural Network, linear Braitenberg, behavior-based, rule-based). Simple localization algorithms based on odometry. An e-copy of a simple e-puck manual will be made available to the students.

WEEK 5 – October 16 and 17

Lecture – 2 h
Collective movements in natural societies; focus on flocking phenomena. Collective movements in artificial systems: Reynolds' virtual agents (Boids) and experiments with multi-robot systems (flocking, formation). Graph-based distributed control for continuous consensus algorithms (spatial rendez-vous, formation).

Reading
Primary
- Gowal S., “A Framework for Graph-Based Distributed Rendezvous of Nonholonomic Multi-Robot Systems”, EPFL Thesis no. 5845, Ch. 6 and 7 (pp. 49-60), 2013.

Secondary

Lab 4 – 3 h
Multi-robot localization, coordinated and collective movements in a point-simulator (Matlab) and Webots.

WEEK 6 – October 23 and 24; guest lecturer: Ali Marjovi

Lecture – 2h
Division of labor and task-allocation mechanisms: threshold-based algorithms, market-based algorithms and comparisons between the two algorithmic classes.

Reading
Primary
Secondary

Lab 5 – 3 h
Multi-robot systems coordination using market-based and threshold-based algorithms using Webots/point-simulator.

WEEK 7 – October 30 and 31; guest lecturer: Ali Marjovi

Lecture – 2 h
Collective decision-making.

Reading
Primary

Secondary

Lab verification test – 3 h (in the usual computer room)
During the lab session, topics: lab 1 to 5.

Course project
Consolidation of student teams and aggregation of student teams per weekly office hours.

WEEK 8 – November 6 and 7

Lecture – 2 h
Introduction to multi-level modeling techniques (underlying methodological framework, levels, assumptions, principles). Linear and nonlinear modeling case studies.

Reading
Primary
Course project – 3 h (in the usual computer room)
Kick-off of the course project during the lab session.

WEEK 9 – November 13 and 14

Lecture – 2 h
Calibration of model parameters; an additional challenging multi-level modeling case study (distributed seed assembly). Combined modeling and machine-learning methods for control optimization; diversity and specialization metrics.

Reading

Primary

Secondary

Lab 6 – 3 h
Multi-level modeling of distributed robotic systems.

WEEK 10 –November 20 and 21

Lecture – 2 h

Reading

Primary

Secondary

Lab 7 – 3 h
Particle Swarm Optimization: application to benchmark functions and control shaping for single robot (in simulation).

WEEK 11 – November 27 and 28

Lecture – 2 h
Application of machine-learning techniques to automatic control design and optimization of multi-robot systems. Specific issues for automatic control design and optimization in distributed systems (e.g., credit assignment problem). Advanced techniques for expensive and noisy optimization problems.

Reading

Primary

Secondary

Lab 8 – 3 h
Particle Swarm Optimization application to noisy problems: benchmark functions and multi-robot problems.
WEEK 12 - December 4 and 5

Lecture – 2 h
Distributed environmental sensing using static wireless sensor networks.

Reading

Primary

Secondary

Lab 9 – 3 h
Introduction to the Mica-z sensor nodes (real hardware). Distributed sensing with static, mobile, and robotic nodes (implementation in Webots).

WEEK 13 – December 11 and 12

Lecture – 2 h
Distributed environmental sensing using mobile and robotic sensor networks. General take home messages of the course.

Reading

Primary

Secondary

Discussion about the course – 1 h (in SG 0213)
Discussion with students based on comments submitted to the regular SAC survey, during the lab session.

Course project – 2 h (in the usual computer room)
Assistance before report submission and project defenses, during the lab session.

WEEK 14 – December 18 and 19

Course project – 5h (in Tue in ME B331 and Wed in SG 0213)
Defenses of course projects.