
Distributed Intelligent Systems – W8
Multi-Level Modeling Methods 
Applied to Distributed Robotic 

Systems
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Outline
• Multi-Level Modeling Methodology

– Rationale
– Theoretical background
– Methodological framework

• Examples
– Obstacle avoidance (linear)
– Collaborative stick pulling (nonlinear)
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Modeling Rationale, Choices, 
and Framework Overview
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Motivation for Modeling

• Understanding the interplay of the various elements 
of the system (e.g., robot features, robot numbers, 
environment, noise level)

• Having additional tools for designing and optimizing 
the distributed robotic system 

• Delivering performance predictions for the ensemble 
in shorter time or before doing actual experiments

• Investigating experimental conditions difficult or 
impossible to reproduce in reality

• Formally analyzing system properties 
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Modeling Choices
• Gray-box approach: to easily incorporate a priori 

information (e.g., # of agents, technological and 
environmental features)

• Probabilistic: to capture noisy interactions, noisy robotic 
components, stochastic control policies, and enable 
aggregation schemes towards abstraction

• Multi-level: to represent explicitly different design 
choices, trade off computational speed and faithfulness to 
reality, bridge mathematically tractable models and reality 
in an incremental way

• Bottom-up: start from the physical reality and increase the 
abstraction level until the highest abstraction level
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Multi-Level Modeling Methodology

Ss Sa

Target system (physical reality): 
information on controller, S&A, 
communication, morphology and 
environmental features

Submicroscopic: intra-robot (e.g., 
S&A, transceiver) and environment 
(e.g., physics) details reproduced 
faithfully

Ss SaSs SaSs Sa

Microscopic : multi-agent models, 
only relevant robot features 
captured, 1 agent = 1 robot

Macroscopic: representation of the 
whole swarm (typically a 
mathematical model)
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Multi-Level Implementation 
Choices for this Course

• Submicroscopic: Webots

• Microscopic: non spatial, state = behavior, exact 
model in terms of quantities (e.g., agent/state)

• Macroscopic: non spatial, mean field approach, 
Ordinary Differential Equation (ODE) 
approximation applies (e.g., average number 
agents/state) 
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Experimental Invariant 
Features and Modeling 

Assumptions
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Invariant Experimental Features
• Short-range (typically 1 robot diameter), crude (noisy, 

a few discrimination levels) proximity sensing
• Full mobility but limited navigation (no planning, no 

absolute localization)
• Limited use of long-range communication channels 

available on the platforms (only as a teammate sensor)
• Reactive, behavior-based control, with a few internal 

states
• No overcrowded arenas
• Multiple runs (typically 5+) for the same experimental 

parameters; randomized robot poses at the beginning
9



Modeling Assumptions:  
Semi-Markovian Properties 

• Description for environment and multi-robot system using 
states

• The system future state is a function of the current state (and 
possibly of the amount of time spent in it)

Submicroscopic
(pose, S&A state, etc.)

pin pout
Tx

Sx

Microscopic/Macroscopic
(transition probabilities, state 
duration) 10



Modeling Assumptions: Spatiality
• nonspatial metrics for collective performance
• well-mixed system because of simple navigation, multiple 

randomized interactions in a convex environment, multiple runs 
with randomized initial conditions, no overcrowding (sparseness)

R
R

O

O
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Submicroscopic:
spatial

Micro/macroscopic:
nonspatialO

R

Free space
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Experimental Validation of 
Spatiality Assumption

Position

Shape

Nonembodied obstacles = 
detection surfaces

Size Square Rect. Round All shapes Geometry

robot 0.31 ± 0.04 0.3 ± 0.03 0.32 ± 0.02 0.31 ± 0.03 0.31

Numerical example (mean ± std dev, 3 locations, 100 h simulated time): 
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Experimental Validation of 
Spatiality Assumption

Symmetry
of Stick 
Distribution

# sticks

Default
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Methodological Framework: 
Theoretical Background
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Microscopic Level
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p(n,t) = probability of an agent to be in the state n at time t
If Markov properties fulfilled:

inflow outflow

Probability the agent was in a 
given state n’ 

Transition probability

Sum over all possible states 
n’ the agent can be in
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Macroscopic Level – Time-Continuous
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(time-continuous)

inflow outflow

n, n’ = states of the agents (all possible states at each instant)
Nn = average fraction (or mean number) of agents in state n at time t

Left and right side of the equation: averaging over the total 
number of agents, dividing by Δt, limit Δt → 0; neglect 
distributions of the stochastic variables and assume homogeneous 
agents (mean field approach):

t
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Rate Equation (time-discrete):

inflow outflow
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k = iteration index
T = time step, sampling interval
TW = transition probability per time step 

Macroscopic Level – Time-Discrete
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Notation often simplified to:

T is specified in the text once of all, P is calculated from T*W or other 
calibration methods 
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Time Discretization: 
The Engineering Recipe

1. Assess what’s the time resolution needed for your system 
performance metrics (if time step chosen appropriately small, no 
impact on prediction accuracy in the type of experiments presented)

2. Choose whenever possible the most computationally efficient model: 
time-discrete less computationally expensive than emulation of 
continuity (e.g., Runge-Kutta, etc.)

3. Advantage of time-discrete models: a single common sampling rate 
can be defined among different modeling levels

Time-discrete vs. time-continuous models:
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Methodological Framework: 
An Incremental Bottom-Up 

Recipe
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1. Target System & Task(s)
Perform basic design choices for the experimental set-up:

• Hardware and software for the robotic platform
• Environment in which robots operate
• Task(s) robots must accomplish
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2. Metric(s) and State Space
• Define system performance metric(s)
• Define state space (number of states, granularity) 
• Performance metric(s) and state definitions well aligned!
• Exploit controller blueprint (if available) as additional source of 

information for defining the state space 

Search Avoidance

Obstacle detected

Grip

Obstacle avoided
C(k) = pg2Ns(k)Ng(k)
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3. Submicroscopic Model
Implement faithfully your design choices in a 
submicroscopic model (in principle even running the same 
control code; libraries and APIs are usually provided in 
standard commercial or open-source simulators)
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4. Microscopic Model

…

Caste 1

Distributed robotic 
system

Environment

Coupling (e.g., manipulation)

…

O11 O1p
Oq1 Oqr

Ss Sa

Ss Sa

Ss Sa

R11

R12

R1l

…

Caste n

Se Sd

Si
Rn1

…

Se Sd

Si

Rnm

… …Sa Sb Sa Sb

• Aggregate local interactions and reduce intra-robot details
• Maintain state space’s structure as defined at Step 2
• Maintain individual representation (and exact discrete quantities) for 

each robotic node and environmental object of interest

23



5. Macroscopic Model

Environment 

Distributed robotic system 

Coupling

Type 1

Ss Sa

Se Sd

Si

Type q

Caste1

Caste n

Sa Sb

• Aggregate individual nodes into one 
or multiple representations (castes) at 
collective level

• Maintain state space’s structure as 
defined at Step 2

• Solve numerically or analytically the 
ODE system (mean field approach)

• Exploit conservation laws (e.g. # of 
robots in an enclosed arena) to 
simplify the representation of the  
dynamical system
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• Number of parameters is decreasing with the abstraction level
• Calibrate a given level based on the underlying one (e.g., 

submicroscopic with physical system; microscopic with 
submicroscopic, macroscopic with microscopic) 

• Parametric (e.g., mean only, mean and variance) or non 
parametric  (actual distribution recorded at the lower level) 
assumptions

• Various methods available 
– Ad hoc experiments [Correll & Martinoli, ISER 2004]
– System identification techniques (e.g., constrained parameter fitting) 

[Correll & Martinoli, DARS 2006]
– Statistical verification techniques (e.g., trajectory analysis) [Roduit et al., 

IROS 2007]
• Parameter example for micro- and macroscopic models: 

– State durations
– State transition probabilities

6. Parameter Calibration

pin pout
Tstate 25



State Durations & 
Discretization Interval

1. Measure all interaction times of interest in your system, i.e. those 
which might influence the system performance metrics. 
Note: often “delay states” can just summarize all what you need without 
getting into the details of what’s going on within the state. 

2. Consider only average values (we might consider also parameter 
distributions in the future, the modeling methodology does not 
prevent to do so)

3. For time-discrete systems: choose the time step T = GCF of all 
the durations measured (e.g., 3 s obstacle avoidance, 4 s object 
manipulation, T = 1 s) -> no rounding error.
Note: more accuracy in parameter measuring means in this case more 
computational cost when simulating 
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State Transition Probabilities
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Aa = surface of the whole arena 27

• Geometric considerations
• Ad hoc calibration experiments
• Ex. stick-pulling experiment



Linear Example:
Obstacle Avoidance 
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A Simple Linear Model

© Nikolaus Correll 2006

Example: search (moving forwards) and obstacle avoidance
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A Simple Example

Nonspatiality
& microscopic
characterizationDeterministic 

robot’s flowchart

Search Avoidance

Start

Obstacle?
YN

Search Avoid., τa

Start

Obstacle?
pa

ps

1-pa

Probabilistic 
agent’s flowchart

Ss Sa

pa

τa

ps

PFSM
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Linear Model – Probabilistic Delay

Search Avoidance, Ta

Ta = mean obstacle avoidance duration
pa = probability of  moving to obstacle av.
ps = probability of resuming search
Ns = average # robots in search
Na= average # robots in obstacle avoidance
N0 = # robots used in the experiment
k = 0,1, … (iteration index)

Ns(k+1) = 

Na(k+1) =

Ns(k)

N0 – Ns(k+1)

ps=1/Ta

+ psNa(k)- paNs(k)

pa

Ns(0) = N0 ; Na(0) = 0
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Linear Model – Deterministic Delay

Search Avoidance, Ta

Ta = mean obstacle avoidance duration
pa = probability moving to obstacle avoidance
Ns = average # robots in search
Na= average # robots in obstacle avoidance
N0 = # robots used in the experiment
k = 0,1, … (iteration index)

Ns(k+1) = 

Na(k+1) =

Ns(k)

N0 – Ns(k+1)

1

+ paNs(k-Ta)- paNs(k)

pa

! Ns(k) = Na(k) = 0 for all k<0 !
Ns(0) = N0 ; Na(0) = 0
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Linear Model – Sample Results

Micro to macro comparison
(same robot density but wall surface
become smaller with bigger arenas)

Submicro to micro comparison
(different controllers, steady state 
comparison)

Na*/N0
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Steady State Analysis
• Nn(k+1) = Nn(k) for all states 

n of the system → Nn
*

• Note 1: equivalent to differential 
equation of dNn/dt = 0

• Note 2: for time-delayed equations 
easier to perform the steady-state 
analysis in the Z-space but in t-space 
also ok (see IJRR-04)

• For our linear example 
(deterministic delay option):

aa
s Tp

NN
+

=
1

0*

Group size

Ex.: normalized mean number of 
robots in search mode at steady state 
as a function of time for obstacle 
avoidance
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Nonlinear Example –
Collaborative Stick Pulling
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The Stick-Pulling Case Study

Proximity 
sensors

Arm elevation
sensor

Physical Set-Up Collaboration via indirect communication

• 2-6 robots
• 4 sticks
• 40 cm radius arena

IR reflective
band
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Systematic Experiments

Real robots Submicroscopic model

•[Martinoli and Mondada, ISER, 1995]
•[Ijspeert et al., AR, 2001]
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Results of Experiments and 
Submicroscopic Modeling

• Real robots (3 runs) and submicroscopic model (10 runs)
• System bifurcation as a function of #robots/#sticks

Nrobots > Nsticks

Nrobots ≤ Nsticks
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State Transition Probabilities
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From Reality to Abstraction

Deterministic 
robot’s flowchart

Probabilistic agent’s
flowchart

PFSMNonspatiality
& microscopic
characterization
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Full Macroscopic Model

• 6 states: 5 DE + 1 cons. EQ
• Ti,Ta,Td,Tc ≠  0; Τxyz = Τx + Τy + Τz
• TSL= Shift Left duration
• [Martinoli et al., IJRR, 2004] 
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with time-varying coefficients 
(nonlinear coupling):
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Swarm Performance Metric 

C(k) = pg2Ns(k-Tca)Ng(k-Tca)

e

T

k

T

kC
e

∑
== 0

t

)(
 (k)C

: mean # of 
collaborations at 
iteration k

: mean collaboration rate 
over Te

Collaboration rate: # of sticks per time unit
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Results (Standard Arena)

Submicro (10 runs)
Micro (100 runs)
Macro (1 run)

Discrepancies 
because of ODE 
approximation 
(nonlinearities + 
discrete exact vs. 
average quantities)
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Results: 4 x #Sticks, #Robots and 
Arena Area

Submicro (10 runs)
Micro (100 runs)
Macro (1 run)
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Reducing the Macroscopic Model

Τi,Τa,Τd,Τc << Τg →Τi=Τa=Τd=Τc=0

Goal: reach 
mathematical 
tractability
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Nonlinear coupling!

Reduced Macroscopic Model

Search Grip

Ns = average # robots in searching mode
Ng= average # robots in gripping mode
N0 = # robots used in the experiment
M0 = # sticks used in the experiment
Γ = fraction of robots that abandon pulling
Te = maximal number of iterations
k = 0,1, …Te (iteration index)

Ns(k+1) = 

Ng(k+1) =

Ns(k) – pg1[M0 – Ng(k)]Ns(k)

successful

+ pg2Ng(k)Ns(k)

unsuccessful

+ pg1[M0 – Ng(k-Τg)]Γ(k;0)Ns(k-Tg)

N0 – Ns(k+1)

∏
−=

−=Γ
k

Tkj
sg

g

jNpk )](1[)0;( 2

Ns(0) = N0, Ng(0) = 0
Ns(k) = Ng(k) = 0 for all k<0

Initial conditions and causality
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Results Reduced Microscopic Model

• 4 robots, 4 sticks, Ra = 40 cm • 16 robots, 16 sticks, Ra = 80 cm

• Microscopic (100 runs) and macroscopic models overlapped
• Only qualitatively agreement with submicroscopic/real robots results
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Steady State Analysis 
(Reduced Macro Model)

• Steady-state analysis [Nn(k+1) = Nn(k)] → It can be demonstrated that :

g

opt
g RM

NforT
+

≤∃
1

2

0

0

with N0 = number of robots and M0= number of sticks, 
Rg approaching angle for collaboration

• Counterintuitive conclusion: an optimal Tg can exist also in
scenarios with more robots than sticks if the collaboration is 
very difficult (i.e. Rg very small)! 

∝

approaching angle for collaboration
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Analysis Verification 
(Micro and Macro Full Model)

gg RR
10
1~ =

20 robots and 16 sticks 
(optimal Tg)

Example: (collaboration very difficult)
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• can be computed numerically by integrating the full 
model ODEs or solving the full model steady-state equations

Optimal Gripping Time
• Steady-state analysis → can be computed analytically in 

the simplified model (numerically approximated value):
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with β = N0/M0 = ratio robots-to-sticks

[Lerman et al, Alife Journal, 2001], [Martinoli et al, IJRR, 2004]

opt
gT
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Conclusion
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Take Home Messages
• Three main levels of models: submicro, micro and macro
• Microscopic models use exact discrete quantities, 

macroscopic mean-field models use average quantities in 
terms of unit numbers

• Multi-level modeling allows for different 
approximations, accuracy/computation trade-offs

• If carefully designed, models allow also for system 
optimization and closing the loop between analysis and 
synthesis

• Methodological framework tested on multiple case 
studies (additional examples and open problems 
discussed next week)
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Additional Literature – Week 8
Papers
• Prorok A., Correll N., and Martinoli A., “Multi-level Spatial Modeling for Stochastic 

Distributed Robotic Systems”. Int. Journal of Robotics Research, 30(5): 574-589, 2011.
• Di Mario E., Mermoud G., Mastrangeli M., and Martinoli A. “A Trajectory-based 

Calibration Method for Stochastic Motion Models”. Proc. of the 2011 IEEE/RSJ Int. 
Conf. on Intelligent Robots and Systems, September 2011, San Francisco, U.S.A., pp. 
4341-4347.

• Roduit P., Martinoli A., and Jacot J., “A Quantitative Method for Comparing Trajectories 
of Mobile Robots Using Point Distribution Models”. Proc. of the 2007 IEEE/RSJ Int. 
Conf. on Intelligent Robots and Systems, October-November 2007, San Diego, USA, pp. 
2441-2448. 

• Ijspeert A. J., Martinoli A., Billard A., and Gambardella L.M., “Collaboration through 
the Exploitation of Local Interactions in Autonomous Collective Robotics: The Stick 
Pulling Experiment”. Autonomous Robots, 11(2):149–171, 2001. 

• Lerman, K. and Galstyan, A. “Mathematical model of foraging in a group of robots: 
Effect of interference”. Autonomous Robots, 13(2):127–141, 2002. 

• S. Berman, A. Halasz, M. A.Hsieh, and V. Kumar. “Optimal Stochastic Policies for Task 
Allocation in Swarms of Robots”, Trans. on Robotics, 25(4): 927–937, 2009. 

• M. A. Hsieh, A. Halasz, S. Berman, and V. Kumar. "Biologically Inspired Redistribution 
of a Swarm of Robots Among Multiple Sites”. Swarm Intelligence, 2 (2-4): 121–141, 
2008.

• T. W. Mather and M. A. Hsieh. "Analysis of Stochastic Deployment Policies with Time 
Delays for Robot Ensembles”. Int. Journal of Robotics Research, , 30(5): 590–600, 2011
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