Distributed Sensing

Distributed Intelligent Systems
6.12.2017

Ali Marjovi
Lab Structure

- Multiple basic case studies going through typical topics in distributed sensing:
 - performance evaluation
 - space-division scheduling
 - time-division scheduling
 - static vs. mobile sensor networks
 - controlled vs. uncontrolled mobility

- network of 16 robots
- sensing light field
General Performance Metric

\[M_{C}(\alpha, \beta, \gamma, \delta) = \alpha \cdot \left(1 - \frac{1}{\varphi_{\text{max}} - \varphi_{\text{min}}} \cdot \sqrt{\frac{\sum_{n=1}^{N}(\hat{\varphi}_{n}(x, y, t) - \varphi_{n}(x, y, t))^2}{N}} \right) + \beta \]

- \(\alpha \cdot \left(1 - \frac{\sum_{k=1}^{K} S_k}{K \cdot T \cdot F_s / L_s} \right) \) Measurement cost
- \(\gamma \cdot \left(1 - \frac{\sum_{k=1}^{K} P_k}{K \cdot T \cdot F_m} \right) \) Communication cost
- \(\delta \cdot \left(1 - \frac{\sum_{k=1}^{K} V_k}{K \cdot T \cdot \nu_{\text{max}}} \right) \) Mobility cost

Estimation error
Backcasting
Backcasting
Backcasting
Time Adaptive Sampling

Assumption: linear model of sensed process

\[\hat{x}_t = \alpha \cdot x_{t-1} + \beta \]
Controlled vs. Uncontrolled Mobility

- Random walk
 - varying field dynamics

- Guided mobility
 - local communication
 - personal/neighborhood best (highest observed gradient)
 - inertia & randomness
 - **Hint:** Similar to lab 4, there is a function for how to navigate a differential wheel robot towards a goal position