
Faëzeh Rahbar

29.11.2017

Distributed Intelligent Systems

Lab 9 Tutorial



Lab Structure

1. Multi-robot PSO for obstacle avoidance:

– Same fitness function as single-robot PSO

– Differences in performance and evaluation time

2. Budget allocation

– Comparing standard PSO, PSO-pbest, PSO OCBA 

3. Multi-robot PSO for collaborative tasks:

– Coordinated motion: move as far as possible while 

staying together



Code Structure
Pso_sup.c

•Main()

–Initialize world

–Best = pso()

–Evaluate best

•Calc_fitness()

–Reposition robots 
randomly

–Send candidate 
solutions to robots

–store fitness value

Pso.c

Pso()

Initialize swarm

For each iteration

Move particles

Evaluate particles

Return best particle

Obs_con.c

• Main()

– Initialize robot

– Receive weights from 
supervisor

– Run controller with 
weights

– Evaluate fitness and 
send to supervisor



Noise-resistant PSO

• Setting NOISY=1 triggers two changes

– Half the number of iterations

– Revaluate performance for lbest (with flag 

EVOLVE_AVG)

• You need to implement the behavior for 
EVOLVE_AVG

– Modified moving average (MMA) with age as the 

number of periods. 

– Remember to increase age. 



PSO-OCBA

• Optimal allocation of computation budget 

• Very effective in the presence of noise



PSO for a collaborative task

• Fitness value calculated in the supervisor

• Copy-paste the noise resistant PSO

• More difficult task than obstacle avoidance

• New sources of uncertainties



Notes and Clarifications

• Simulations take longer with complex tasks, read ahead 
and answer questions while the simulation runs.

• Performance evaluations have a high variance, you may 
need additional runs to establish clear trends

• Remember to fill the feedback form


