Distributed Intelligent Systems
Lab 8 Tutorial

Faezeh Rahbar

22.11.2017
Part 1: Exploring PSO

• Run PSO on two benchmark functions (Sphere and Rastrigin functions) using SwarmViz

• Observe how swarm acts when varying parameters
SwarmViz

- Make sure you only have the indicated plots marked

- Fitness landscape plot
 - A history of all particles
 - Colors indicate fitness values

- Trajectory plots
 - Movement of particles
 - Previous positions can also be plotted
SwarmViz

Benchmark function parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fitness function</td>
<td>Sphere</td>
</tr>
<tr>
<td>Noise (sigma)</td>
<td>0.00</td>
</tr>
<tr>
<td>Dimension</td>
<td>24</td>
</tr>
</tbody>
</table>

Swarm parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particles</td>
<td>30</td>
</tr>
<tr>
<td>Minimum</td>
<td>-5.12</td>
</tr>
<tr>
<td>Maximum</td>
<td>5.11</td>
</tr>
<tr>
<td>Maximum velocity</td>
<td>5.12</td>
</tr>
<tr>
<td>Inertia</td>
<td>0.60</td>
</tr>
<tr>
<td>Max iterations</td>
<td>1500</td>
</tr>
<tr>
<td>Local weight</td>
<td>2.00</td>
</tr>
<tr>
<td>Neighbor weight</td>
<td>2.00</td>
</tr>
<tr>
<td>Neighbor number</td>
<td>2</td>
</tr>
</tbody>
</table>

PSO algorithm parameters

- Noise resistance

Fitness Landscape

- Dimension 1 vs Dimension 2

Euclidean Distance

- Distance vs Iteration

Fitness (Best and average)

- Fitness vs Iteration
Part 2 : PSO for Robotic Learning

• Obstacle avoidance
 – PSO with an Artificial Neural Network to do unsupervised robotic learning

• Design a fitness function for obstacle avoidance
 – Compare with the fitness proposed by Floreano and Mondada

• How is the performance affected by PSO parameter variations
Webots simulation

Iteration: 1
Particle: 12

10 x 20 iterations
Code Structure

Pso_sup.c

- **Main()**
 - Initialize world
 - Best = pso()
 - Evaluate best

- **Calc_fitness()**
 - Reposition robots randomly
 - Send candidate solutions to robots
 - Store fitness value

Pso.c

- **Pso()**
 - Initialize swarm
 - For each iteration
 - Move particles
 - Evaluate particles
 - Return best particle

Obs_con.c

- **Main()**
 - Initialize robot
 - Receive weights from supervisor
 - Run controller with weights
 - Evaluate fitness and send to supervisor
Notes

• The performances for robotic learning are printed in the console of Webots

• Please fill in the Feedback Forms on Moodle