Distributed Intelligent Systems
Lab 2 Tutorial

Ali Marjovi

04.10.2017
Feedback forms

To help us improve, please fill them in. They are anonymous.
Why robotics simulation software?

- Hardware prototyping is time consuming and expensive
- Real commercial robots are expensive
- Ability to quickly change the experimental set-up
- Sometimes easier to measure physical quantities
- Sometimes faster than real-time
 - Numerical optimization methods (GA, PSO, etc.)
Robot prototyping and simulation software
Can model practically any type of robot:
 - Wheeled, legged, flying, swimming, etc.
Programming interface to C, C++, Java, Matlab
Accelerated OpenGL graphics
Physics simulation with Open Dynamics Engine (ODE)
Physics-based simulation (ODE)

Mechanical systems that have:

- Rigid bodies (solid objects)
- Joints (like hinges)
- Contact and collisions

- Friction (keeps a tower of cards steady)
- Gadgets (like springs)
Many robot models: Khepera, E-Puck, Aibo, Pioneer 3DX, DARwIn-OP, etc.

Sensors: distance sensors, light sensors, cameras, touch sensors, GPSs, force sensors

Actuators: servo-motors, grippers, LEDs, connectors, etc.

Emitters and receivers (multi-agent systems)

And more ...
Using Webots @ Home

- Available for Linux Ubuntu 12.04, 14.04 and 14.10 (64 bit)
 - Support for the lab is only guaranteed for the computers in this room
- Download Webots installation package from
 - http://www.cyberbotics.com/linux
- See installation instructions on Moodle
- Windows and Mac versions also available, we cannot offer support
Reminder: Webots GUI

- Scene tree
- World view
- Editor
- Console
e-puck robot

- 8 proximity sensors
- 8 light sensors
- 1 color camera
- 3 microphones
- 1 speaker
- 3 axis accelerometers
- and more ...
Robot control – Rule based

- Read front distance sensor
- Is object too close?
 - Yes: Make a turn
 - No: Continue moving forward

- Continue moving forward
- Is object too close?
 - Yes: Make a turn
 - No: Continue moving forward
Robot control – Braitenberg
Finite State Machine (FSM)

OBSTACLE AVOIDANCE

distance < 5

distance >= 5

LIGHT FOLLOWING

distance > 15

distance <= 15

distance >= 5
And now: let's start ...