Distributed Intelligent Systems – W9
Multi-Level Modeling: Calibration and Combination with Machine Learning
Outline

• Calibration methods for multi-level models
 – Microscopic and macroscopic parameters
 – Approximations
• Difficult examples in terms of calibration
 – Distributed seed assembly
 – The wireless connected swarm
• Combined modeling and machine-learning methods
 – Homogenous and heterogeneous learning
 – Diversity and specialization
Model Calibration
Number of parameters is decreasing with the abstraction level

Calibrate a given level based on the underlying one (e.g., submicroscopic with physical system; microscopic with submicroscopic, macroscopic with microscopic)

Parametric (e.g., mean only, mean and variance) or non-parametric (actual distribution recorded at the lower level) assumptions

Various methods available

- Ad hoc experiments [Correll & Martinoli, ISER 2004]
- System identification techniques (e.g., constrained parameter fitting) [Correll & Martinoli, DARS 2006]
- Statistical verification techniques (e.g., trajectory analysis) [Roduit et al., IROS 2007]

Parameter example for micro- and macroscopic models:

- State durations
- State transition probabilities
1. **Measure** all interaction times of interest in your system, i.e. those which might influence the system performance metrics.
Note: often “delay states” can just **summarize** all what you need without getting into the details of what’s going on within the state.

2. Consider only **average values** (we might consider also parameter distributions in the future, the modeling methodology does not prevent to do so)

3. For time-discrete systems: choose the **time step** $T = \text{GCF of all the durations measured}$ (e.g., 3 s obstacle avoidance, 4 s object manipulation, $T = 1$ s) -> no rounding error.
Note: more accuracy in parameter measuring means in this case more computational cost when simulating
From W8: State Transition Probabilities

- Geometric considerations
- Ad hoc calibration experiments
- Ex. stick-pulling experiment

\[
p_s = A_s / A_a
\]
\[
p_r = A_r / A_a
\]
\[
p_R = p_r (N_0 - 1)
\]
\[
p_w = A_w / A_a
\]
\[
p_{g1} = p_s
\]
\[
p_{g2} = R_g p_s
\]

\[A_a = \text{surface of the whole arena}\]
Geometric Probabilities g_i

[Correll & Martinoli, ISER 2004]

- g_s, g_w, \ldots are function of sensor range, behavior, robot’s and object’s size, …: interaction characterization!
- Geometric probabilities can be considered normalized detection areas

Example: stick

$g_s = \frac{A_s}{A_{arena}}$
Encountering Probabilities

[Correll & Martinoli, ISER 2004]

1. Measure geometric probabilities of detection \(g_i \)
2. Calculate the **encountering rate** \(r_i \) \([s^{-1}]\) for the object \(i \) from the geometric probabilities \(g_i \):

\[
r_i = \frac{\nu W_s}{A_s} g_i
\]

\(A_s = \) detection area of the smallest object
\(\nu = \) mean robot speed
\(W_s = \) robot’s detection width for the smallest object (center-to-center)

3. For time-discrete models, calculate the **encountering probabilities** \(p_i \) (per time step) from the encountering rates:

\[
p_i = r_i T
\]

Note: slightly different from [Martinoli et al., IJRR04] (decoupled time and space)!
Model Calibration - Practice

- Assumptions (well-mixed, linear overlap of areas) might be only partially fulfilled.
- We do not capture distributions in the model parameters, only deterministic average values; distributions might more faithfully capture:
 - Controller type (e.g., distal vs. proximal)
 - Active vs. passive objects (e.g., robot vs. wall)
 - Embodiment vs. non embodiment (e.g., area vs. real obstacle)
 - Way of measuring your metrics (e.g., egocentric, allocentric)
 - Impact on the considered swarm performance metric through error propagation (clear decoupling between parameters and structure inaccuracies of the model).
Model Calibration - Practice

Bin distribution of interaction time T_a (mean $T_a = 25 \times 50 \text{ ms} = 1.25 \text{ s}$)

- **Micro/macro, deterministic delay**
- **Sub-microscopic, distal controller**
- **Micro/macro, prob. delay**
- **Submicroscopic, proximal contr.**
Model Calibration - Practice

Geometric probability g: example of transition in space from search to obstacle avoidance (1 moving robot, 1 dummy robot, Webots measurements, egocentric)

Distal controller (rule-based)

Proximal controller (Braitenberg, linear)
Calibration Example from W6 – Distributed Seed Assembly
The Seed-Assembling Case Study

Robot behavior

• Reactive, non-communicating, non-adaptive behavior
• Qualitative stigmergy important: 2 rules in interaction with cluster:
 – Avoid if interaction with the cluster body
 – Manipulate if interaction with cluster tips
• Quantitative stigmergy minimal:
 – the bigger, the more stable the cluster
 – big cluster (> 2) = number of manipulation sites as cluster of 2 seeds
 – almost no difference between cluster incrementing and decrementing probabilities
• 1 robot state: loaded, unloaded
Robot Controller

Start → Look for seeds → Object detected?

- N → Obstacle?
 - N → Pick up the seed and decrement cluster’s size
 - Y → Obstacle avoidance

- Y → Carrying a seed?
 - N → Obstacle?
 - N → Pick up the seed and decrement cluster’s size
 - Y → Obstacle avoidance
 - Y → Drop the seed and increment cluster’s size
PFSM

Start → Look for seeds → Object detected?

Probots + Pwalls + Pclusters (kT)

Carrying a seed?

N → Obstacle?

N → Pick up the seed and decrement cluster’s size

Y → Obstacle avoidance

Y → Obstacle?

Y → Drop the seed and increment cluster’s size

1 - [Probots + Pwalls + Pclusters (kT)]
Parameter Calibration

Geometric Estimations

- **Incrementing** probabilities

- **Decrementing** probabilities

Perimeters are relevant for computing the cluster modifying probabilities: robot turns on the spot for object distinction before approaching the cluster!
Robot Controller

From Agassounon et al, 2004, correct representation:
Micro-Macroscopic Models

From Agassounon et al, 2004, correct representation:

Robots always active
(no worker allocation)
Models: Explanations and Predictions

Single cluster? All models predicted yes and in roughly how much time!

Number of clusters (inter-distance between seeds < 1 seed) monotonically decreases if:

• Probability to create a NEW cluster of 1 seed in the middle of the arena is equal to zero
• No hard partitioning of the arena (robot homogeneously mix clusters)
• Cluster are not broken in two parts by removing one seed in the middle
Long Distributed Building Experiments

Submicroscopic Model (Webots)

- 10% white noise on all sensor and actuators
- Perfectly homogeneous team
- Kinematic mode

Real robots (Khepera)

- Electrical floor: continuous power supply in any position and orientation
- Heterogeneities among teammates and components
- Inaccuracies in acting and sensing
- Dynamics (e.g., friction) plays a role
Results (till single cluster)

- 3 robots
- real robots (5 runs), submicroscopic (10 runs), microscopic model (100 runs)
- [Martinoli, Ijspeert, Mondada, 1999]

- Mean size of clusters
- Size of the biggest cluster
- Number of clusters
Example of arising 2D Structures

Noise in S&A and poor navigation capabilities do not allow for precise, controllable structure building.

Submicroscopic

Real robots
Macroscopic Model: Distributed Building Dynamics

- $d_i(kT) = \text{decr_geom_probability}_i * p_find_i(kT)$
- $c_i(kT) = \text{incr_geom_probability}_i * p_find_i(kT)$

- $p_find_i(kT) = \text{finding probability of all the cluster of size } i$
- If n = number of seeds -> macroscopic model of environment with n nonlinearly coupled ODE (n for each possible cluster size) + robot states

Some Results from Agassounon et al., 2004 (1, 5, 10 robots always active)

Metric: average cluster size (20 seeds)

Saturation phase: all seeds in a single cluster or in the robots’ grippers

1 and 5 robots

10 robots
Micro-Macroscopic Models

Robots can go resting (worker allocation)
Some Results from Agassounon et al., 2004 (10 robots with activity regulation)

20 seeds, threshold for abandoning the arena = 25 min, 10 robots

No more saturation: growing phase beyond 10-seeds single cluster

Average cluster size | Number of active robots
Calibration Example – Wireless Connected Swarm
The Wireless Connected Swarm

- Idea: using the communication channel as a crude binary sensor (“I can communicate” or “I cannot communicate”)

- Two algorithms
 - α-algorithm: maintain the number of direct connections around α (parameter) -> Multi-level modeling!
 - β-algorithm: maintain a minimal node connectivity regulated by β (parameter)

- Add the possibility of sensing an environmental cue (e.g., light) to modulate the individual nodes’ β parameter and generate heterogeneity in the swarm and therefore targeted movement (indirect distributed taxis)
The α-algorithm

In simulation:
- radial disk communication
- Proximity sensors for robot avoidance
- Unbounded arena

A: connected robots, different heading
B: unconnected robots
C: 180º turns for reacquiring connection
D: new random heading

A: connected robots, different heading
B: unconnected robots
C: 180º turns for reacquiring connection
D: new random heading
The α-Algorithm: Microscopic Simulator

Note: fragility of the algorithm in maintaining connectivity

[Nembrini et al, SAB 2002]
The α-Algorithm:
Webots and Real Robots

[Pereira et al, IROS 2013]
The β-algorithm

- Connection recovery (coherence maneuver) as before but based on a different communication-based perceptual input
- If a robot (A) loses the connection with another specific node (B), it looks at how many of its neighboring nodes (C and D) still have this specific node (B) as neighbor
- If this number is less or equal than β than it starts a coherence maneuver; once recovered random heading

$\beta = 1$

$\beta = 4$
The β-algorithm: Microscopic Simulator

Note: red robots perceive light and raise their β to infinite

[Nembrini et al, SAB 2002]
α-Algorithm: The PFSM

[Winfield et al., *Swarm Intelligence*, 2008]
α-Algorithm: Parameter Calibration

[Winfield et al., *Swarm Intelligence*, 2008]
α-Algorithm: Sample Results

α = 10, 40 robots

Submicroscopic model (Player/Stage)

Macroscopic model with parameters measured from submicroscopic model

Macroscopic model with geometrically estimated parameters
Journal Publications using the Same Modeling Framework

Stick Pulling
- [Lerman, Galstyan, Martinoli, Ijspeert, *Artificial Life*, 2001]

Object Aggregation

Robot Aggregation and Swarming – more on Week 13
- [Winfield, Liu, Nembrini, Martinoli, *Swarm Intelligence J.*, 2008]

Coverage – use spatial models
Combined Modeling and Machine-Learning Methods
Rationale for Combined Methods (1)

• Any level of modeling (submicro, micro, or macro) allow us to consider certain parameters and leave others; models, as expression of reality abstraction, can be considered as more or less coarse “filters” of the reality

• Combined modeling/machine-learning techniques can be used at any of the abstraction levels; machine-learning techniques will explore the design parameters explicitly represented at a given level of abstraction

• Depending on the features of the hyperspace to be searched (size, continuity, noise, etc.), appropriate machine-learning techniques should be used (e.g., hill-climbing vs. population-based

• One particular optimization problem is system identification: the performance to optimize is the matching with the reality (or with a lower abstraction level). See model calibration in [Correll & Martinoli, DARS 2006].
Rationale for Combined Methods (2)

Macroscopic + ML? Most of the time not needed since very fast + continuous; homogeneous systems mainly; standard numerical optimization techniques/systematic search can be used.

Microscopic + ML (see this lecture’s examples); for instance, diversity and specialization can be studied.

Submicroscopic + ML (see Week 10 and 11 examples using PSO); for instance low-level design parameters can be learned.

Target system + ML = adaptation with HW in the loop (on-board or off-board).
In-Line Adaptive Learning
In-Line Adaptive Learning (Li, Martinoli, Abu-Mostafa, 2001)

- **GTP**: Gripping Time Parameter
- **Δd**: learning step
- **d**: direction
- Underlying low-pass filter for measuring the performance

Randomly pick d from \{+, -\}

FIRST TRY

- $\text{GTP} \leftarrow \text{GTP} + \Delta d$
- worse \rightarrow better

Enlarge Δd

SECOND TRY

- $\text{GTP} \leftarrow \text{GTP} + \Delta d$
- worse \rightarrow better

Switch Dir

- $d \leftarrow -d$
- $\text{GTP} \leftarrow \text{GTP} + \Delta d$
- worse \rightarrow better
Algorithm Parameters

| Algorithmic parameters: |
|------------------------|---|
| T_m | 2400 |
| Description | averaging period for reinforcement signal (sec) |
| E | 1.9 |
| Description | GTP offset enlarge factor |
| F | 0.3 |
| Description | GTP factor enlarge ratio |
| U | 2 |
| Description | GTP offset shrink divider |
| V | 0.5 |
| Description | GTP factor shrink ratio |

From Li et al., *Adaptive Behavior*, 2004
In-Line Adaptive Learning

Differences with gradient descent methods:
- Fixed rules for calculating step increase/decrease → limited descent speed → no gradient computation → more conservative but more stable
- Randomness for getting out from local minima (no momentum)
- Underlying low-pass filter is part of the algorithm

Differences with Reinforcement Learning:
- No learning history considered (only previous step)

Differences with basic In-Line Learning:
- Step adaptive → faster and more stability at convergence
Co-Learning in a Collaborative Framework
Sample Results – Homogeneous Learning

Short averaging window
(filter cut-off f_{high})

Long averaging window
(filter cut-off f_{low})

Note: 1 parameter for the whole group!
Heterogeneous Learning

Key question: does team diversity enhance performance? I.e., can individual members become specialized?

Performance ratio between 2 caste and homogeneous system (submicro/micro models, systematic search)

4 robots, one per color, micro + learning
Heterogeneous vs. Homogenous Learning

Performance ratio between heterogeneous (full and 2-castes) and homogeneous groups AFTER learning

[Li et al., *Adaptive Behavior*, 2004]

Notes:
- large T_m (long averaging window)
- only private strategies
- global = group
 local = individual
Measuring Diversity and Specialization
Entropy-based diversity measure introduced in AB-04 could be used for analyzing threshold distributions

Simple entropy: \[H(\mathcal{R}) = -\sum_{i=1}^{m} p_i \log p_i. \]

Social entropy: \[D(\mathcal{R}) = \int_{0}^{\infty} H(\mathcal{R}, h) \, dh. \]

\(p_i = \) portion of the agents in cluster \(i \); \(m = \) cluster in total; \(h = \) taxonomic level parameter

Input: a swarm system \(\mathcal{R} = \{r_1, r_2, \ldots, r_n\} \) of size \(n \); a difference measure \(d \).

For different level \(h \), the \(C_u \) clustering algorithm does:

1. Initialize \(n \) clusters with cluster \(c_i = \{r_i\} \);
2. For each \(c_i \): for each \(r_j \): If \(d(r_j, r_k) \leq h \) for all \(r_k \) in \(c_i \), add \(r_j \) to cluster \(c_i \);
3. Discard redundant clusters;
4. Calculate \(p_i \) and the entropy \(H(\mathcal{R}, h) \). Note that when \(r_j \) belongs to \(s \) clusters including \(c_i \), its contribution to \(p_i \) is \(1/ sn \).

Return \(\int_{0}^{\infty} H(\mathcal{R}, h) \, dh \) as the hierarchic social entropy.
Example – Simple Entropy

- $R = \{r_1, r_2, r_3\}$
- $n = 3$ (three swarm points)
- bi-dimensional space
- define a distance: Euclidian distance
- $h =$ taxonomic level parameter
- $m =$ number of clusters

$h < 3, m = 3$

$3 \leq h < 4, m = 2$

$$H(R) = -\sum_{i=1}^{3} p_i \log p_i = H(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}) =$$

$$-\frac{1}{3} \log \frac{1}{3} = 0.477$$

$$H(R) = -\sum_{i=1}^{2} p_i \log p_i = H(\frac{1}{3}, \frac{2}{3}) =$$

$$-\frac{1}{3} \log \frac{1}{3} - \frac{2}{3} \log \frac{2}{3} = 0.159 + 0.117 = 0.276$$
Example – Simple Entropy

\[H(R) = -\sum_{i=1}^{2} p_i \log p_i = H\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right) = H\left(\frac{1}{2}, \frac{1}{2}\right) \]

\[= -\frac{1}{2} \log \frac{1}{2} - \frac{1}{2} \log \frac{1}{2} = 0.301 \]

Check \(\sum_{i=1}^{m} p_i = 1 \) with overlapping clusters!
Example – Social Entropy

\[D(R) = \int_0^\infty H(R, h)dh = 3 \times H\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right) + 1 \times H\left(\frac{1}{3}, \frac{2}{3}\right) + 2 \times H\left(\frac{1}{2}, \frac{1}{2}\right) + 0 = 2.309 \]

Note: In contrast to simple entropy \(\geq 1 \)

Contrast with \(R = \{r_1, r_2, r_3\} \) and \(r_1 = r_2 = r_3 \) (homogeneous swarm), for any \(h \geq 0 \) → single cluster → \(D(R) = 0! \)
Differences with Plain Euclidian Diversity Measure

\[d(a, b) = \sqrt{\sum_i (a_i - b_i)^2} \]

Components in all dimensions

\[D_{eu} = \frac{1}{N(N-1)} \sum_a \left[\sum_{b \neq a} d(a, b) \right] \]

All points from any other point

• Underlying distance measure in the solution space might be the same (e.g. Euclidian distance)
• Social entropy is looking for possible clustering of the vectors (looking for possible castes) while Euclidian diversity is just looking how spread out/diverse in general are the vectors
Specialization Metric

Specialization metric introduced in AB-04:

\[S = \text{corrcoef}(D; R) \times D. \]

S = specialization; D = diversity (e.g., social entropy); R = swarm performance

Notes

• Idea: “weighting diversity with performance”
• This is useful when the number of tasks to be solved is not well-defined or it is difficult to assess the task granularity a priori. In such cases the mapping between task granularity and caste granularity might not trivial (see the limited performance of a caste-based solution in the stick-pulling experiment)
• Could be used for analyzing specialization arising from a variable-threshold division of labor algorithm (see lecture Week 6)
Sample Results in the Standard Sticks

- 2 serial grips needed to get the sticks out
- 4 sticks, 2-6 robots, 80 cm arena

Relative Performance
- Specialists more important for small teams
- Local p > global p
- Enforced caste: pay the price for odd team sizes

Diversity
- Measured using social entropy
- Flat curves, difficult to tell whether diversity brings performance

Specialization
- Specialization higher with global when needed, drop more quickly when not needed
- Enforcing caste: “low-pass filter” effect
Conclusion
Take Home Messages

• The multi-level modeling methodology is a framework that has been successfully used in multiple case studies
• Models’ parameter calibration is difficult and still an open challenge
• Two additional case studies have illustrated how to capture time-varying parameters and how to parametrize a model for an experiment in an arena without enclosure
• Different modeling levels can be combined with machine-learning for design and optimization purposes
• Microscopic models allows for efficiently studying diversity and specialization issues
• Specialization is the part of diversity that improves performance
• The diversity and specialization level of a heterogeneous swarm can be quantitatively measured
Papers

