Particle Swarm Optimization for Multi-robot Systems

Distributed Intelligent Systems
25.11.2015

Zeynab Talebpour
Lab Structure

• Multi-robot PSO for obstacle avoidance:
 – Same fitness function as single-robot PSO
 – Differences in performance and evaluation time

• Budget allocation
 – Comparing standard PSO, PSO-pbest, PSO OCBA

• Multi-robot PSO for collaborative tasks:
 – Coordinated motion: move as far as possible while staying together
 – More difficult task than obstacle avoidance
 – New sources of uncertainties
Code Structure

Pso_sup.c

- Main()
 - Initialize world
 - Best=pso()
 - Evaluate best

- Calc_fitness()
 - Reposition robots randomly
 - Send candidate solutions to robots
 - Evaluate fitness
 - Return fitness

Pso.c

- Pso()
 - Initialize swarm
 - For each iteration
 - Move particles
 - Evaluate particles
 - Return best particle

Obs_con.c

- Main()
 - Initialize robot
 - Receive weights from supervisor
 - Run controller with weights
 - Send sensor data to supervisor
Noise-resistant PSO

• Setting NOISY=1 triggers two changes
 – Half the number of iterations
 – Revaluate performance for *lb*est (with flag EVOLVE_AVG)

• You need to implement the behavior for EVOLVE_AVG
 – Modified moving average (MMA) with *age* as the number of periods.
 – Remember to increase *age*.
PSO-OCBA

- Optimal allocation of computation budget
- Very effective in the presence of noise
Notes and Clarifications

• Simulations take longer with complex tasks, read ahead and answer questions while the simulation runs.
• Performance evaluations have a high variance, you may need additional runs to establish clear trends
• You may also compare your results with your classmates

• Remember to fill the feedback form