Distributed Intelligent Systems
Lab 8 Tutorial

Zeynab Talebpour

18.11.2015
Exploring PSO

- First portion of lab: run PSO on two benchmark functions: Sphere and Rastrigin function using SwarmViz
- Observe how swarm acts when varying parameters
PSO for Robotic Learning

- Second part of lab: PSO with an Artificial Neural Network to do unsupervised robotic learning
- Design a fitness function for obstacle avoidance
 – Compare with the fitness proposed by Floreano and Mondada
- How is the performance affected by PSO parameter variations
SwarmViz

- Make sure you only have the indicated plots marked
- Fitness landscape plot
 - A history of all particles
 - Colors indicate fitness values
- Trajectory plots
 - Movement of particles
 - Previous positions can also be plotted
SwarmViz

Fitness Landscape

Euclidean Distance

Comparison of Fitness (Best and average)
Pso_sup.c

• Main()
 – Initialize world
 – Best = pso()
 – Evaluate best

• Calc_fitness()
 – Reposition robots randomly
 – Send candidate solutions to robots
 – Evaluate fitness
 – Return fitness

Pso.c

• Pso()
 – Initialize swarm
 – For each iteration
 • Move particles
 • Evaluate particles
 – Return best particle

Obs_con.c

• Main()
 – Initialize robot
 – Receive weights from supervisor
 – Run controller with weights
 – Send sensor data to supervisor
Notes and Clarifications

• Please fill in the Feedback Forms on Moodle
• The performances for robotic learning are printed in the console of Webots