Distributed Intelligent Systems – W8
Multi-Level Modeling Methods
Applied to Distributed Robotic Systems
Outline

• Multi-Level Modeling Methodology
 – Rationale
 – Theoretical background
 – Methodological framework

• Examples
 – Obstacle avoidance (linear)
 – Collaborative stick pulling (nonlinear)
Modeling Rationale, Choices, and Framework Overview
Motivation for Modeling

• Understanding the interplay of the various elements of the system (e.g., robot features, robot numbers, environment, noise level)

• Having additional tools for designing and optimizing the distributed robotic system

• Delivering performance predictions for the ensemble in shorter time or before doing actual experiments

• Investigating experimental conditions difficult or impossible to reproduce in reality

• Formally analyzing system properties
Modeling Choices

• **Gray-box approach**: to easily incorporate a priori information (e.g., # of agents, technological and environmental features)

• **Probabilistic**: to capture noisy interactions, noisy robotic components, stochastic control policies, and enable aggregation schemes towards abstraction

• **Multi-level**: to represent explicitly different design choices, trade off computational speed and faithfulness to reality, bridge mathematically tractable models and reality in an incremental way

• **Bottom-up**: start from the physical reality and increase the abstraction level until the highest abstraction level
Multi-Level Modeling Methodology

Macroscopic: representation of the whole swarm (typically a mathematical model)

Microscopic: multi-agent models, only relevant robot features captured, 1 agent = 1 robot

Submicroscopic: intra-robot (e.g., S&A, transceiver) and environment (e.g., physics) details reproduced faithfully

Target system (physical reality): info on controller, S&A, communication, morphology and environmental features
Multi-Level Implementation
Choices for this Course

- **Submicroscopic**: Webots

- **Microscopic**: non spatial, state = behavior, exact model in terms of quantities

- **Macroscopic**: non spatial, mean field approach, Ordinary Differential Equation (ODE) approximation applies
Experimental Invariant Features and Modeling Assumptions
Invariant Experimental Features

- Short-range (typically 1 robot diameter), crude (noisy, a few discrimination levels) proximity sensing
- Full mobility but limited navigation (no planning, no absolute localization)
- Limited use of long-range communication channels available on the platforms (only as a teammate sensor)
- Reactive, behavior-based control, with a few internal states
- No overcrowded arenas
- Multiple runs (typically 5+) for the same experimental parameters; randomized robot poses at the beginning
Modeling Assumptions: Semi-Markovian Properties

- Description for environment and multi-robot system using states
- The system future state is a function of the current state (and possibly of the amount of time spent in it)

Submicroscopic (pose, S&A state, etc.)

Microscopic/Macroscopic (transition probabilities, state duration)
Modeling Assumptions: Spatiality

- **nonspatial metrics** for collective performance
- **well-mixed system** because of simple navigation, multiple randomized interactions in a convex environment, multiple runs with randomized initial conditions, no overcrowding (sparseness)

Submicroscopic: spatial

Micro/macroscopic: nonspatial

Free space
Experimental Validation of Spatiality Assumption

Nonembodied obstacles = detection surfaces

Numerical example (mean ± std dev, 3 locations, 100 h simulated time):

<table>
<thead>
<tr>
<th>Size</th>
<th>Square</th>
<th>Rect.</th>
<th>Round</th>
<th>All shapes</th>
<th>Geometry</th>
</tr>
</thead>
<tbody>
<tr>
<td>robot</td>
<td>0.31 ± 0.04</td>
<td>0.3 ± 0.03</td>
<td>0.32 ± 0.02</td>
<td>0.31 ± 0.03</td>
<td>0.31</td>
</tr>
</tbody>
</table>
Experimental Validation of Spatiality Assumption

Symmetry of Stick Distribution

Default

sticks 13
Methodological Framework: Theoretical Background
Microscopic Level

\[p(n, t) = \text{probability of an agent to be in the state } n \text{ at time } t \]

If Markov properties fulfilled:

\[\Delta p(n, t) = p(n, t + \Delta t) - p(n, t) \]

\[= \sum_{n'} p(n, t + \Delta t | n', t) p(n', t) - \sum_{n'} p(n', t + \Delta t | n, t) p(n, t) \]

- **Transition probability**
- **Sum over all possible states** n’ the agent can be in
- **Probability the agent was in a given state n’**
- **inflow**
- **outflow**
Macroscopic Level – Time-Continuous

Left and right side of the equation: averaging over the total number of agents, dividing by Δt, limit $\Delta t \to 0$; neglect distributions of the stochastic variables and assume homogeneous agents (mean field approach):

$$\frac{dN_n(t)}{dt} = \sum_{n'} W(n \mid n', t) N_{n'}(t) - \sum_{n'} W(n' \mid n, t) N_n(t)$$

Rate Equation (time-continuous)

\[\text{inflow} \quad \text{outflow} \]

$n, n' =$ states of the agents (all possible states at each instant)
$N_n =$ average fraction (or mean number) of agents in state n at time t

$$W(n \mid n', t) = \lim_{\Delta t \to 0} \frac{p(n, t + \Delta t \mid n', t)}{\Delta t}$$

Transition rate
Macroscopic Level – Time-Discrete

Rate Equation (time-discrete):

\[N_n((k+1)T) = N_n(kT) + \sum_{n'} TW(n | n', kT) N_{n'}(kT) - \sum_{n'} TW(n' | n, kT) N_n(kT) \]

k = iteration index
T = time step, sampling interval
TW = transition probability per time step

Notation often simplified to:

\[N_n(k+1) = N_n(k) + \sum_{n'} P(n | n', k) N_{n'}(k) - \sum_{n'} P(n' | n, k) N_n(k) \]

T is specified in the text once of all, P is calculated from T*W or other calibration methods
Time Discretization:

The Engineering Recipe

Time-discrete vs. time-continuous models:

1. Assess what’s the **time resolution** needed for your system **performance metrics** (if time step chosen appropriately small, no impact on prediction accuracy in the type of experiments presented)

2. Choose whenever possible the **most computationally efficient model:** time-discrete less computationally expensive than emulation of continuity (e.g. Runge-Kutta, etc.)

3. Advantage of time-discrete models: a **single common sampling rate** can be defined among different modeling levels
Methodological Framework: An Incremental Bottom-Up Recipe
1. Target System & Task(s)

Perform basic design choices for the experimental set-up:

- Hardware and software for the robotic platform
- Environment in which robots operate
- Task(s) robots must accomplish
2. Metric(s) and State Space

- Define system performance metric(s)
- Define state space (number of states, granularity)
- Performance metric(s) and state definitions well aligned!
- Exploit controller blueprint (if available) as additional source of information for defining the state space

\[C(k) = p_{g2} N_s(k) N_g(k) \]
3. Submicroscopic Model

Implement faithfully your design choices in a submicroscopic model (in principle even running the same control code; libraries and APIs are usually provided in standard commercial or open-source simulators)
4. Microscopic Model

- Aggregate local interactions and reduce intra-robot details
- Maintain state space’s structure as defined at step 2
- Maintain individual representation (and exact discrete quantities) for each robotic node and environmental object of interest
5. Macroscopic Model

- Aggregate individual nodes into one or multiple representations (castes) at collective level
- Maintain state space’s structure as defined at step 2
- Solve numerically or analytically the ODE system (mean field approach)
- Exploit conservation laws (e.g. # of robots in an enclosed arena) to simplify the representation of the dynamical system
6. Parameter Calibration

- Number of parameters is decreasing with the abstraction level
- Calibrate a given level based on the underlying one (e.g., submicroscopic with physical system; microscopic with submicroscopic, macroscopic with microscopic)
- Parametric (e.g., mean only, mean and variance) or non parametric (actual distribution recorded at the lower level) assumptions
- Various methods available (more next week)
 - Ad hoc experiments (e.g., interaction time)
 - System identification techniques (e.g., constrained parameter fitting) [Correll & Martinoli, DARS 2006]
 - Statistical verification techniques (e.g., trajectory analysis) [Roduit et al., IROS 2007]
- Parameter example for micro- and macroscopic models:
 - State durations
 - State-to-state transition probabilities

\[p_{in} \xrightarrow{T_{state}} \quad p_{out} \]
Linear Example:
Obstacle Avoidance
A Simple Linear Model

Example: search (moving forwards) and obstacle avoidance

© Nikolaus Correll 2006
A Simple Example

Deterministic robot’s flowchart

Nonspatiality & microscopic characterization

Probabilistic agent’s flowchart

PFSM
Linear Model – Probabilistic Delay

\[N_s(k+1) = N_s(k) - p_a N_s(k) + p_s N_a(k) \]

\[N_a(k+1) = N_0 - N_s(k+1) \]

- \(N_s(0) = N_0 \); \(N_a(0) = 0 \)

- \(T_a = \) mean obstacle avoidance duration
- \(p_a = \) probability of moving to obstacle av.
- \(p_s = \) probability of resuming search
- \(N_s = \) average # robots in search
- \(N_a = \) average # robots in obstacle avoidance
- \(N_0 = \) # robots used in the experiment
- \(k = 0, 1, \ldots \) (iteration index)
Linear Model – Deterministic Delay

\[N_s(k+1) = N_s(k) - p_a N_s(k) + p_a N_s(k-T_a) \]

\[N_a(k+1) = N_0 - N_s(k+1) \]

Ta = mean obstacle avoidance duration
pa = probability moving to obstacle avoidance
Ns = average # robots in search
Na = average # robots in obstacle avoidance
N0 = # robots used in the experiment
k = 0,1, … (iteration index)
Linear Model – Sample Results

\[N_{a*}/N_0 \]

Submicro to micro comparison
(different controllers, static scenarios)

Micro to macro comparison
(same robot density but wall surface become smaller with bigger arenas)
Steady State Analysis

- \(N_n(k+1) = N_n(k) \) for all states \(n \) of the system \(\rightarrow N_n^* \)
- Note 1: equivalent to differential equation of \(dN_n/dt = 0 \)
- Note 2: for time-delayed equations easier to perform the steady-state analysis in the Z-space but in t-space also ok (see IJRR-04)
- For our linear example (deterministic delay option):

\[
N_s^* = \frac{N_0}{1 + p_a T_a} \quad N_a^* = \frac{N_0 p_a T_a}{1 + p_a T_a}
\]

Ex.: normalized mean number of robots in search mode at steady state as a function of time for obstacle avoidance
Nonlinear Example – Collaborative Stick Pulling
The Stick-Pulling Case Study

Physical Set-Up

- 2-6 robots
- 4 sticks
- 40 cm radius arena

Collaboration via indirect communication

- IR reflective band
- Proximity sensors
- Arm elevation sensor
Systematic Experiments

Real robots

- [Martinoli and Mondada, ISER, 1995]
- [Ijspeert et al., *AR*, 2001]

Submicroscopic model
Experimental and Realistic Simulation Results

• Real robots (3 runs) and realistic simulations (10 runs)
• System bifurcation as a function of #robots/#sticks
Geometric Probabilities

\[A_a = \text{surface of the whole arena} \]

\[p_s = \frac{A_s}{A_a} \]

\[p_r = \frac{A_r}{A_a} \]

\[p_R = p_r (N_0 - 1) \]

\[p_w = \frac{A_w}{A_a} \]

\[p_{g1} = p_s \]

\[p_{g2} = R_g p_s \]
From Reality to Abstraction

Deterministic robot’s flowchart

Nonspatiality & microscopic characterization

PFSM Probabilistic agent’s flowchart
Full Macroscopic Model

For instance, for the average number of robots in searching mode:

\[N_s(k+1) = \frac{N_s(k) - [\Delta g_1(k) + \Delta g_2(k) + p_w + p_R]N_s(k) + \Delta g_1(k - T_{cga})\Gamma(k; T_a)N_s(k - T_{cga})}{\Delta g_2(k - T_{ca})N_s(k - T_{ca}) + \Delta g_2(k - T_{cda})N_s(k - T_{cda}) + p_wN_s(k - T_a) + p_RN_s(k - T_{ia})} \]

with time-varying coefficients (nonlinear coupling):

\[\Delta g_1(k) = p_{g1}[M_0 - N_g(k) - N_d(k)] \]
\[\Delta g_2(k) = p_{g2}N_g(k) \]
\[\Gamma(k; T_{SL}) = \prod_{j=k-T_{SL}}^{k-T_{SL}}[1 - p_{g2}N_s(j)] \]

- 6 states: 5 DE + 1 cons. EQ
- \(T_i, T_a, T_d, T_c \neq 0; T_{xyz} = T_x + T_y + T_z \)
- \(T_{SL} \) = Shift Left duration
- [Martinoli et al., *IJRR*, 2004]
Swarm Performance Metric

Collaboration rate: # of sticks per time unit

\[C(k) = p_{g2}N_s(k-T_{ca})N_g(k-T_{ca}) \]

\[C_t(k) = \frac{\sum_{k=0}^{T_e} C(k)}{T_e} \]

: mean # of collaborations at iteration k

: mean collaboration rate over \(T_e \)
Results (Standard Arena)

Discrepancies because of ODE approximation (nonlinearities + discrete exact vs. average quantities)
Results: 4 x #Sticks, #Robots and Arena Area

- Submicro (10 runs)
- Micro (100 runs)
- Macro (1 run)
Reducing the Macroscopic Model

Goal: reach mathematical tractability

\[T_i, T_a, T_d, T_c \ll T_g \rightarrow T_i = T_a = T_d = T_c = 0 \]
Reduced Macroscopic Model

Nonlinear coupling!

Search \rightarrow **Grip**

\[
N_s(k+1) = N_s(k) - p_{g1}[M_0 - N_g(k)]N_s(k) + p_{g2}N_g(k)N_s(k) \\
+ p_{g1}[M_0 - N_g(k-T_g)] \Gamma(k;0)N_s(k-T_g)
\]

\[
N_g(k+1) = N_0 - N_s(k+1)
\]

\[
\Gamma(k;0) = \prod_{j=k-T_g}^{k}[1 - p_{g2}N_s(j)]
\]

Initial conditions and causality

\[N_s(0) = N_0, \; N_g(0) = 0\]

\[N_s(k) = N_g(k) = 0 \; \text{for all} \; k<0\]

\[N_s = \text{average} \; \# \; \text{robots in searching mode}\]

\[N_g = \text{average} \; \# \; \text{robots in gripping mode}\]

\[N_0 = \# \; \text{robots used in the experiment}\]

\[M_0 = \# \; \text{sticks used in the experiment}\]

\[\Gamma = \text{fraction of robots that abandon pulling}\]

\[T_e = \text{maximal number of iterations}\]

\[k = 0,1, \ldots T_e \; (\text{iteration index})\]
Results Reduced Microscopic Model

- Microscopic (100 runs) and macroscopic models overlapped
- Only qualitatively agreement with submicroscopic/real robots results

- 4 robots, 4 sticks, $R_a = 40$ cm
- 16 robots, 16 sticks, $R_a = 80$ cm
Steady State Analysis
(Reduced Macro Model)

• Steady-state analysis \([N_n(k+1) = N_n(k)]\) → It can be demonstrated that:

\[
\exists ~ T_g^{opt} \quad \text{for} \quad \frac{N_0}{M_0} \leq \frac{2}{1 + R_g}
\]

with \(N_0 = \) number of robots and \(M_0 = \) number of sticks,
\(R_g \propto \) approaching angle for collaboration

• Counterintuitive conclusion: an optimal \(T_g\) can exist also in scenarios with more robots than sticks if the collaboration is very difficult (i.e. \(R_g\) very small)!
Analysis Verification
(Micro and Macro Full Model)

Example: \(\tilde{R}_g = \frac{1}{10} R_g \) (collaboration very difficult)

20 robots and 16 sticks (optimal \(T_g \))
Optimal Gripping Time

- Steady-state analysis $\Rightarrow T_g^{\text{opt}}$ can be computed \textit{analytically} in the simplified model (numerically approximated value):

$$T_g^{\text{opt}} = \frac{1}{\ln(1 - p_g l R_g \frac{N_0}{2})} \ln \frac{1 - \frac{\beta}{2} (1 + R_g)}{1 - \frac{\beta}{2}}$$

for $\beta \leq \beta_c = \frac{2}{1 + R_g}$

with $\beta = N_0/M_0 = \text{ratio robots-to-sticks}$

- T_g^{opt} can be computed \textit{numerically} by integrating the full model ODEs or solving the full model steady-state equations

Conclusion
Take Home Messages

• Three main levels of models: submicro, micro and macro
• Microscopic models use exact discrete quantities, macroscopic mean-field models use average quantities in terms of unit numbers
• Multi-level modeling allows for different approximations, accuracy/computation trade-offs
• If carefully designed, models allow also for system optimization and closing the loop between analysis and synthesis
• Methodological framework tested on multiple case studies (additional examples and open problems discussed next week)
Additional Literature – Week 8

Papers

