Course project presentation

Multi robot navigation in cluttered and dynamic environments

Pierre Gaudilliére
Francisco Ramirez
Samuel Beaud
Presentation overview

1. Introduction
2. Strategies implemented
 2.1 Reynolds’ rules
 2.2 Braitenberg
 2.3 Metrics used
 2.4 Specific improvements
1. Simulation results
 3.1 Provided maps
 3.2 Additional maps
1. Real world experiment results
 4.1 Differences with simulation
 4.2 Main results
 4.3 Improvements
1. Conclusion
1. Introduction
1. Introduction

Two main parts:

1. Simulation on Webots
2. Real world experiment

Using e-puck robots
2. Strategies implemented
2.1 Reynolds’ rules

Alignment: attempt to match velocity (speed and direction)

Cohesion: attempt to stay close to nearby flockmates

Separation: avoid collisions with nearby flockmates
2.2 Braitenberg neural network for obstacle avoidance

Neurons with 16 connections in total

https://en.wikipedia.org/wiki/Braitenberg_vehicle
Neural network picture taken from course 4 of Prof Martinoli
2.3 Metrics used to assess the performance

\(o[t] \): orientation metric
\(c[t] \): cohesion metric
\(v[t] \): velocity metric

\[p[t] = o[t] \cdot c[t] \cdot v[t] \]
\[p_{\text{overall}}[t] = \sum p[t] / t \]
2.4 Specific improvements:

General performance
- Absolute migratory urge adaptation
- Local migratory urge adaptation

Obstacle avoidance situations
- for the crossing
- for non-moving objects
2.4 Specific improvements:

- Absolute migratory urge adaptation
2.4 Specific improvements:

- Local migratory urge adaptation
2.4 Specific improvements:

- Obstacle avoidance
3. Simulation results
3.1 Provided maps
3.2 Two additional maps
Some metric values from the four maps stated before
4. Real World Experiment Results
4.1 Differences with simulation

- Selector of the e-pucks as Robot ID
- Get neighbor’s selector when communication successful
- Flock Crossing: only consider own’s flock selectors
- Use agendas to coordinate the actions and compute relative speed
- Calibration of IR sensors

Reynolds Rules:
- Divide migration weight by 8
- Initial forward speed

Braitenberg:
- Matrix weights adapted to fit on real robots:
 \{-10, -10, -5, 3, 3, 5, 10, 10, 10, 10, 5, 3, 3, -5, -10, -10\}
- Smaller Threshold for obstacle avoidance: 50
4.2 Main Results

- Single Robot:
 - Good obstacle avoidance + Migration

- Several Robots:
 Issues:
 - Hard to progress as a flock
 - Consider robots within the flock as obstacles
 - Lose communication
4.3 Improvements

- Increase cohesion and reduce dispersion rules
- Decrease influence of Braitenberg weights
- Increase obstacle avoidance threshold
- Assign single role to robot with selector: sender or receiver
- Leader/Follower approach may work better
5. Conclusion
5. Conclusion

- Simulation on Webots
- Simulation vs real world
 - Different challenges
 - Improvements
Questions ?