DIS – Project
Multi-robot navigation in cluttered and dynamic environments
Group 8
December 19th, 2018
Outline

- Procedure & Maps
- Experiences
- Hardware Implementation
- Conclusion
Outline

- Procedure & Maps
 - Experiences
 - Hardware Implementation
- Conclusion
Procedure

- Three algorithms tested
 - Reynolds
 - Evolutionary Algorithms
 - Graph based

- Experiences on five different static maps

- Best performing algorithm further developed
Procedure
Training maps (1/5)
Procedure
Training maps (2/5)
Procedure

Training maps (3/5)
Procedure

Training maps (4/5)
Procedure
Training maps (5/5)
Outline

- Procedure & Maps
- Experiences
 - Reynolds
 - Evolutionary Algorithm
 - Graph Based
- Hardware Implementation
- Conclusion
Experiences
Reynolds

- Cohesion
- Separation
- Alignment

- Braitenberg for obstacle avoidance
Experiences

Reynolds

Evolution of the overall fitness score through time
Experiences
Evolutionary Algorithms

• Neural net architectures:
 • Simple neural net (no hidden units)
 • Multi-layer perceptron (7,4)

• Inputs/Outputs:
 • Every relevant inputs (relative positions, sensor inputs, etc...)
 • Outputs right and left motor speed ∈ [0,1]
Experiences
Evolutionary Algorithms
Experiences
Graph Based

• Three different implementations for obstacle avoidance:
 • Negative weights
 • Braitenberg weights
 • State machine

Sources: Falconi, R., & Gowal, S. (2009).
Experiences

Checking the formation
Experiences
Graph Based
Experiences

Graph Based
Experiences
Graph Based

Clearly the best performing algorithm
Experiences Crossing

Crossing performance flock 1 (left side of the map)

Crossing performance flock 2 (right side of the map)
Experiences
Scaling up

Evolution of the overall fitness score through time

- graph_based_rb
- graph_based_rb_8_robots

Overall fitness [-]
Time step [-]
Outline

- Procedure & Maps
- Experiences
- Hardware Implementation
- Conclusion
Hardware

Full implementation
Hardware Flocking
Hardware
Obstacle avoidance
Hardware

1 vs 1 Crossing
Outline

- Procedure & Maps
- Experiences
- Hardware Implementation
- Conclusion
Conclusion

- Over all acceptable performances in simulation
- Hardware is tricky
- Possible improvement
 - EKF instead of odometry
 - Formations
 - Communication protocols
 - More robust hardware

Thank you

Any questions?