DISTRIBUTED INTELLIGENT SYSTEMS

PRESENTATION

Sarah Bonaly, Julien Calabro, Louis Munier, Mohammed-Ismail Ben Salah
Introduction

• The aim of this project is to use e-pucks in order to develop a flocking behavior while avoiding obstacles.

• The various developed strategies should be performed in simulation on webots and adapted on the real e-pucks.

• Two scenarios should be implemented:
 • *One flock avoiding obstacles*
 • *Two flocks avoiding each other*
Subdivision

- Project segmented in four parts:
 - Flocking behavior:
 - Communication: transmission of information.
 - Localization: not be lost.
 - Analysis: evaluate the solution.
Flocking strategy

Reynolds’ rules

Three rules:

- **Separation**: robots should not be too close
- **Alignment**: robots should go to the same direction
- **Cohesion**: robots should not be too far

Specificities:

- Same coordinate system for all robots
- Relative distances and speeds
Communication strategy on simulation

- Each robot has an ID number given by the selector.
- This identifier defines the order of communication.
- It's a sequential communication each robot will emit and receive one after the other.
Communication strategy on the real e-pucks

- Informations:
 - The ID.
 - The distance of the emitter.
 - The angle of the emitter from the receiver.
Communication strategy on the real e-pucks

- Informations:
 - The ID.
 - The distance of the emitter.
 - The angle of the emitter from the receiver.
Communication strategy on the real e-pucks

- Informations:
 - The ID.
 - The distance of the emitter.
 - The angle of the emitter from the receiver.
Communication strategy on the real e-pucks

- Informations:
 - The ID.
 - The distance of the emitter.
 - The angle of the emitter from the receiver.
Obstacle avoidance

Virtual force$^{[1]}$

Concept

- Virtual force
- Sum of these forces is applied

Obstacle avoidance

Implementation

• Threshold
• Angles taken from e-puck datasheet
• Noise
• Inertia

<table>
<thead>
<tr>
<th>Device</th>
<th>x (m)</th>
<th>y (m)</th>
<th>z (m)</th>
<th>Orientation (rad)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ps0</td>
<td>0.010</td>
<td>0.033</td>
<td>-0.030</td>
<td>1.27</td>
</tr>
<tr>
<td>ps1</td>
<td>0.025</td>
<td>0.033</td>
<td>-0.022</td>
<td>0.77</td>
</tr>
<tr>
<td>ps2</td>
<td>0.031</td>
<td>0.033</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>ps3</td>
<td>0.015</td>
<td>0.033</td>
<td>0.030</td>
<td>5.21</td>
</tr>
<tr>
<td>ps4</td>
<td>-0.015</td>
<td>0.033</td>
<td>0.030</td>
<td>4.21</td>
</tr>
<tr>
<td>ps5</td>
<td>-0.031</td>
<td>0.033</td>
<td>0.00</td>
<td>3.14159</td>
</tr>
<tr>
<td>ps6</td>
<td>-0.025</td>
<td>0.033</td>
<td>-0.022</td>
<td>2.37</td>
</tr>
<tr>
<td>ps7</td>
<td>-0.010</td>
<td>0.033</td>
<td>-0.030</td>
<td>1.87</td>
</tr>
<tr>
<td>camera</td>
<td>0.000</td>
<td>0.028</td>
<td>-0.030</td>
<td>4.71239</td>
</tr>
</tbody>
</table>
Obstacle avoidance

Results
Odometry on real e-pucks

Frame sharing

• At init. e-puck 0 is taken as the (0,0) of the X-Y frame and communicate with others members of the flock
• Other e-pucks therefore adjust their odometry given the direction and the distance of the signal
Odometry on real e-pucks

Position estimation

- E-puck has motor encoders that give us how many steps were done in one cycle.
- The motor command is given by the flocking behavior.
- Allows us to know the displacement X-Y frame.
Odometry on real e-pucks

Position estimation

- E-puck has motor encoders that give us how many steps were done in one cycle.
- The motor command is given by the flocking behavior.
- Allows us to know the displacement X-Y frame.
Odometry

Real observations
Results
Simulations
Results

Real case
Questions ?
Sources

- Course Distributed Intelligent System, Alcherio Martinoli – EPFL, 2018