Distributed Sensing Using Market-based Task Allocation

Alcouffe Thibault, Lemaitre Joseph, Spieler Patrick
Introduction

- Task-Allocation strategies
- Multi-Level Modeling
- Results
Task-Allocation strategies Problematic

- Distributed Sensing
- Single Robot/Single Task
- Objective: minimize total energy consumption
Task-Allocation strategies Market Algorithms

- Instantaneous assignment
- Time-extended assignment
- Combinatorial auctions
Task-Allocation strategies Parameters

- Two market-based algorithm
- Number of robots 1, ..., 10
Multi-Level Modeling

- Sub-Microscopic (Webots)
- Microscopic (Matlab)
- Macroscopic (Matlab)
Multi-Level Modeling Sub-Microscopic
Multi-Level Modeling PFSM
Multi-Level Modeling PFSM

Idle \longrightarrow \text{Active} \quad p_{i2a} \quad \text{Active} \longrightarrow \text{Idle} \quad p_{a2i}
Multi-Level Modeling Transition Probabilities

- Constant with time
- Failure rate analogy
 - \(f(t) = p \cdot e^{-pt} \)
 - Time in a state: \(\frac{1}{p} \)
Macroscopic Differential Equations

\[N_a(k) = N_a(k - 1) \cdot (1 - p_{a2i}) + N_i(k - 1) \cdot p_{i2a} \]

\[N_i(k) = N_{tot} - N_a(k) \]
Implementation

- Sub-Microscopic: webots (C/C++)
 - Export CSV files
 - Batch run with script

- Microscopic and macroscopic: Matlab
Results Transition Probabilities

Transition Probabilities for the Time-Extended Market

<table>
<thead>
<tr>
<th>N_{rob}</th>
<th>P_{a2i}</th>
<th>stddev</th>
<th>P_{i2a}</th>
<th>stddev</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.005832</td>
<td>0.00053039</td>
<td>1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2</td>
<td>0.005826</td>
<td>0.00078257</td>
<td>0.050236</td>
<td>0.03184180</td>
</tr>
<tr>
<td>3</td>
<td>0.005671</td>
<td>0.00160948</td>
<td>0.013305</td>
<td>0.00728822</td>
</tr>
<tr>
<td>4</td>
<td>0.006297</td>
<td>0.00028339</td>
<td>0.006480</td>
<td>0.00144358</td>
</tr>
<tr>
<td>5</td>
<td>0.006324</td>
<td>0.00057327</td>
<td>0.004912</td>
<td>0.00095581</td>
</tr>
<tr>
<td>6</td>
<td>0.006590</td>
<td>0.00040313</td>
<td>0.003437</td>
<td>0.00038995</td>
</tr>
<tr>
<td>7</td>
<td>0.006566</td>
<td>0.00040488</td>
<td>0.003035</td>
<td>0.00058709</td>
</tr>
<tr>
<td>8</td>
<td>0.007007</td>
<td>0.00047904</td>
<td>0.002519</td>
<td>0.00055101</td>
</tr>
<tr>
<td>9</td>
<td>0.006530</td>
<td>0.00220341</td>
<td>0.001687</td>
<td>0.00061120</td>
</tr>
<tr>
<td>10</td>
<td>0.007075</td>
<td>0.00046667</td>
<td>0.001754</td>
<td>0.00031545</td>
</tr>
</tbody>
</table>
Results Model Validation

Instantaneous assignment

![Graph showing error percentage for different number of robots. The graph compares the Macroscopic Model and Microscopic Model.](image)
Results Model Validation

Time-extended assignment

![Graph showing error percentages for different numbers of robots. The graph compares Macroscopic Model and Microscopic Model.](chart.png)
Results Comparative Studies

![Graph showing energy consumption with different numbers of robots. The graph compares 'Time-Extended Assignment' with 'Instantaneous Assignment'. The energy consumption decreases as the number of robots increases.]