Swarm Intelligence – W5:
Swarm Intelligence for Machine Learning:
An Introduction to Genetic Algorithms and Particle Swarm Optimization
Outline

• Machine-learning-based methods
 – Rationale for real-time, embedded systems
 – Classification and terminology

• Genetic Algorithms (GA)
 – Terminology
 – Main operators and features

• Particle Swarm Optimization (PSO)
 – Terminology
 – Main operators and features

• Comparison between GA and PSO
Rationale and Classification
Why Machine-Learning?

• Complementarity to a model-based/engineering approaches: when low-level details matter (optimization) and/or good models do not exist (design)!

• When the design/optimization space is too big (infinite)/too computationally expensive to be systematically searched

• Automatic design and optimization techniques

• Role of engineer reduced to specifying performance requirements and problem encoding
Why Machine-Learning?

• There are design and optimization techniques robust to noise, nonlinearities, discontinuities

• Individual real-time adaptation to new environmental conditions; i.e. increased individual flexibility when environmental conditions are not known/cannot predicted a priori

• Search space: parameters and/or rules
ML Techniques: Classification

– **Supervised techniques**: “a trainer/teacher” is available.
 • Ex: a set of input-output examples is provided to the system, performance error given by difference between system output and true/teacher-defined output, error fed to the system using optimization algorithm so that performance is increased over trials
 • The generality of the system after training is tested on examples not previously presented to the system (i.e. a “test set” exclusive from the “training set”)

– **Unsupervised techniques**: “trial-and-error”, “evaluative” techniques; no teacher available.
 • The system judges its performance according to a given metric (fitness function) to be optimized
 • The metrics does not refer to any specific input-to-output mapping
 • The system tries out possible design solutions, does mistakes, and tries to learn from its mistakes
 • Number of possible examples is very large, possibly infinite, and not known a priori
ML Techniques: Classification

– **Off-line**: in simulation, download the learned/evolved solution onto real hardware when certain criteria are met

– **Hybrid**: most of the time in simulation (e.g. 90%), last period (e.g. 10%) of the process on real hardware

– **On-line**: from the beginning on real hardware (no simulation). Depending on the algorithm more or less rapid
ML Techniques: Classification

ML algorithms require sometimes fairly important computational resources (in particular for multi-agent search algorithms), therefore a further classification is:

– **On-board**: machine-learning algorithm run on the system to be learned or evolved (no external unit)

– **Off-board**: the machine-learning algorithm runs off-board and the system to be learned or evolved just serves as phenotypical, embodied implementation of a candidate solution
Selected Unsupervised ML Techniques Robust to Noisy Fitness/Reinforcement Functions

• Evolutionary computation
 – Genetic Algorithms (GA)
 – Genetic Programming (GP)
 – Evolutionary Strategies (ES)
 – Particle Swarm Optimization (PSO)

• Learning
 – In-Line Adaptive Learning
 – Reinforcement Learning
Genetic Algorithms
Genetic Algorithms Inspiration

• In natural evolution, organisms adapt to their environments – better able to survive over time

• Aspects of evolution:
 – Survival of the fittest
 – Genetic combination in reproduction
 – Mutation

• Genetic Algorithms use evolutionary techniques to achieve parameter optimization
GA: Terminology

- **Population**: set of m candidate solutions (e.g. m = 100); each candidate solution can also be considered as a genetic individual endowed with a single chromosome which in turn consists of multiple genes.

- **Generation**: new population after genetic operators have been applied (n = # generations e.g. 50, 100, 1000).

- **Fitness function**: measurement of the efficacy of each candidate solution

- **Evaluation span**: evaluation period of each candidate solution during a given generation. The time cost of the evaluation span differs greatly from scenario to scenario: it can be extremely cheap (e.g., simply computing the fitness function in a benchmark function) or involve an experimental period (e.g., evaluating the performance of a given control parameter set on a robot)

- **Life span**: number of generations a candidate solution survives

- **Population manager**: applies genetic operators to generate the candidate solutions of the new generation from the current one

- **Principles**: selection (survival of the fittest), recombination, and mutation
Evolutionary Loop: Several Generations

Ex. of end criteria:
- # of generations
- best solution performance
- …
GA: Coding & Decoding

phenotype coding genotype decoding phenotype

- phenotype: usually represented by a vector of dimension D, D being the dimension of the hyperspace to search; vector components are usually real numbers in a bounded range
- genotype: chromosome = string of genotypical segments, i.e. genes, or mathematically speaking, again a vector of real or binary numbers; vector dimension varies according to coding schema (≥ D)

<table>
<thead>
<tr>
<th>G₁</th>
<th>G₂</th>
<th>G₃</th>
<th>G₄</th>
<th>...</th>
<th>Gₙ</th>
</tr>
</thead>
</table>

\(G₁ = \text{gene} = \text{binary or real number} \)

Coding: real-to-real or real-to-binary via Gray code (minimization of nonlinear jumping between phenotype and genotype)

Decoding: inverted operation

Rem:

- Artificial evolution: usually one-to-one mapping between phenotypic and genotypic space
- Natural evolution: 1 gene codes for several functions, 1 function coded by several genes.
GA: Basic Operators

- **Selection**: roulette wheel (selection probability determined by normalized fitness), ranked selection (selection probability determined by fitness order), elitist selection (highest fitness individuals always selected)
- **Crossover**: 1 point, 2 points (e.g. $p_{\text{crossover}} = 0.2$)

![Crossover Example]

- **Mutation** (e.g. $p_{\text{mutation}} = 0.05$)

![Mutation Example]

Note: examples for fixed-length chromosomes!
GA: Discrete vs Continuous

• For default GA, all parameters discrete (e.g., binary bits, choice index)

• Common adaptation for continuous optimization:
 – Parameters are real values
 – Mutation: apply randomized adjustment to gene value (i.e. $G_i' = G_i + m$) instead of replacing value

• Selection of adjustment range affects optimization progress
Particle Swarm Optimization
Reynolds’ Rules for Flocking

1. Separation: avoid collisions with nearby flockmates

2. Alignment: attempt to match velocity (speed and direction) with nearby flockmates

3. Cohesion: attempt to stay close to nearby flockmates

More on Week 7
PSO: Terminology

- **Population**: set of candidate solutions tested in one time step, consists of \(m \) particles (e.g., \(m = 20 \))

- **Particle**: represents a candidate solution; it is characterized by a velocity vector \(\mathbf{v} \) and a position vector \(\mathbf{x} \) in the hyperspace of dimension \(D \)

- **Evaluation span**: evaluation period of each candidate solution during one a time step; as in GA the evaluation span might take more or less time depending on the experimental scenario.

- **Fitness function**: measurement of efficacy of a given candidate solution during the evaluation span

- **Population manager**: update velocities and position for each particle according to the main PSO loop

- **Principles**: imitate, evaluate, compare
Evolutionary Loop: Several Generations

Start

Initialize particles

Perform main PSO loop

End criterion met?

Ex. of end criteria:
- # of time steps
- best solution performance
- ...

End
Initialization: Positions and Velocities
The Main PSO Loop – Parameters and Variables

• Functions
 – \text{rand}() = \text{uniformly distributed random number in } [0,1]

• Parameters
 – \(w \): velocity inertia (positive scalar)
 – \(c_p \): personal best coefficient/weight (positive scalar)
 – \(c_n \): neighborhood best coefficient/weight (positive scalar)

• Variables
 – \(x_{ij}(t) \): position of particle \(i \) in the \(j \)-th dimension at time step \(t \) (\(j = [1,D] \))
 – \(v_{ij}(t) \): velocity particle \(i \) in the \(j \)-th dimension at time step \(t \)
 – \(x_{ij}^*(t) \): position of particle \(i \) in the \(j \)-th dimension with maximal fitness up to iteration \(t \)
 – \(x_{ij}'(t) \): position of particle \(i' \) in the \(j \)-th dimension having achieved the maximal fitness up to iteration \(t \) in the neighborhood of particle \(i \)
The Main PSO Loop

At each time step \(t \)
for each particle \(i \)
for each component \(j \)

update the velocity

\[
v_{ij}(t+1) = w v_{ij}(t) + c_p \text{rand}() (x_{ij}^* - x_{ij}) + c_n \text{rand}() (x_{i,j}^* - x_{ij})
\]

then move

\[
x_{ij}(t+1) = x_{ij}(t) + v_{ij}(t+1)
\]
The main PSO Loop
- Vector Visualization

Here I am!

My position for optimal fitness up to date

The position with optimal fitness of my neighbors up to date

p-best

n-best
Neighborhoods Types

- **Size:**
 - Neighborhood index considers also the particle itself in the counting
 - **Local:** only \(k \) neighbors considered over \(m \) particles in the population \((1 < k < m)\); \(k=1 \) means no information from other particles used in velocity update
 - **Global:** \(m \) neighbors

- **Topology:**
 - Geographical
 - Social
 - Indexed
 - Random
 - ...
Neighborhood Examples: Geographical vs. Social
Neighborhood Example: Indexed and Circular (lbest)

Particle 1’s 3-neighbourhood

Virtual circle
PSO Animated Illustration

Global optimum

© M. Clerc
GA vs. PSO - Qualitative

<table>
<thead>
<tr>
<th>Parameter/function</th>
<th>GA</th>
<th>PSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>General features</td>
<td>Multi-agent, probabilistic search</td>
<td>Multi-agent, probabilistic search</td>
</tr>
<tr>
<td>Individual memory</td>
<td>no</td>
<td>yes (randomized hill climbing)</td>
</tr>
<tr>
<td>Individual operators</td>
<td>mutation</td>
<td>personal best position history, velocity inertia</td>
</tr>
<tr>
<td>Social operators</td>
<td>selection, crossover</td>
<td>neighborhood best position history</td>
</tr>
<tr>
<td>Particle’s variables (tracked by the population manager)</td>
<td>position</td>
<td>position and velocity</td>
</tr>
</tbody>
</table>
GA vs. PSO - Qualitative

<table>
<thead>
<tr>
<th>Parameter/function</th>
<th>GA</th>
<th>PSO</th>
</tr>
</thead>
<tbody>
<tr>
<td># of algorithmic parameters (basic)</td>
<td>$p_m, p_c, \text{selection par.}$ (1), m, position range (1) = 5</td>
<td>w, c_n, c_p, k, m, position and velocity range (2) = 7</td>
</tr>
<tr>
<td>Population diversity</td>
<td>Somehow tunable via p_c/p_m ratio and selection schema</td>
<td>Mainly via local neighborhood</td>
</tr>
<tr>
<td>Global/local search balance</td>
<td>Somehow tunable via p_c/p_m ratio and selection schema</td>
<td>Tunable with w (w^{\uparrow} → global search; w^{\downarrow} → local search)</td>
</tr>
<tr>
<td>Particle’s variables (tracked by the population manager)</td>
<td>position</td>
<td>position and velocity</td>
</tr>
</tbody>
</table>
GA vs. PSO - Quantitative

- **Goal:** minimization of a given $f(x)$
- **Standard benchmark functions with thirty terms ($n = 30$) and a fixed number of iterations**
- **All x_i constrained to $[-5.12, 5.12]$**

Standard Benchmark Functions

<table>
<thead>
<tr>
<th>Function Name</th>
<th>Function</th>
<th>Iterations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sphere</td>
<td>$f_1(\bar{x}) = \sum_{i=1}^{n} x_i^2$</td>
<td>400</td>
</tr>
<tr>
<td>Generalized Rosenbrock</td>
<td>$f_2(\bar{x}) = \sum_{i=1}^{n-1} [100(x_i^2 - x_{i+1})^2 + (1 - x_i)^2]$</td>
<td>20000</td>
</tr>
<tr>
<td>Rastrigin</td>
<td>$f_3(\bar{x}) = \sum_{i=1}^{n} [x_i^2 - 10\cos(2\pi x_i) + 10]$</td>
<td>400</td>
</tr>
<tr>
<td>Griewank</td>
<td>$f_4(\bar{x}) = 1 + \frac{1}{4000}\sum_{i=1}^{n} x_i^2 - \prod_{i=1}^{n} \cos(\frac{x_i}{\sqrt{i}})$</td>
<td>400</td>
</tr>
</tbody>
</table>
GA vs. PSO - Quantitative

- **GA**: Roulette Wheel for selection, mutation applies numerical adjustment to gene
- **PSO**: lbest ring topology with neighborhood of size 3
- Algorithm parameters used (but not thoroughly optimized):

<table>
<thead>
<tr>
<th>GA</th>
<th>PSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population Size</td>
<td>Swarm Size</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Crossover Probability</td>
<td>Personal Best Attraction</td>
</tr>
<tr>
<td>0.6</td>
<td>2.0</td>
</tr>
<tr>
<td>Mutation Probability</td>
<td>Neighborhood Best Attraction</td>
</tr>
<tr>
<td>0.05</td>
<td>2.0</td>
</tr>
<tr>
<td>Mutation Range</td>
<td>Inertia Factor</td>
</tr>
<tr>
<td>[-0.5, 0.5]</td>
<td>0.6</td>
</tr>
</tbody>
</table>
GA vs. PSO - Quantitative

Bold: best results; 30 runs; no noise on the performance function

<table>
<thead>
<tr>
<th>Function (no noise)</th>
<th>GA (mean ± std dev)</th>
<th>PSO (mean ± std dev)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sphere</td>
<td>0.02 ± 0.01</td>
<td>0.00 ± 0.00</td>
</tr>
<tr>
<td>Generalized Rosenbrock</td>
<td>34.6 ± 18.9</td>
<td>7.38 ± 3.27</td>
</tr>
<tr>
<td>Rastrigin</td>
<td>157 ±21.8</td>
<td>48.3 ± 14.4</td>
</tr>
<tr>
<td>Griewank</td>
<td>0.01 ± 0.01</td>
<td>0.01 ± 0.03</td>
</tr>
</tbody>
</table>
GA vs. PSO – Overview

• According to most recent research, PSO outperforms GA on most (but not all!) continuous optimization problems

• No-Free-Lunch Theorem

• GA still much more widely used in general research community

• Because of random aspects, very difficult to analyze either metaheuristic or make guarantees about performance
Conclusion
Take Home Messages

• A key difference in machine-learning is supervised vs. unsupervised techniques

• Unsupervised techniques are key for robotic learning

• Two robust multi-agent probabilistic search techniques are GA and PSO

• They share some similarities and some fundamental differences

• PSO is a younger technique than GA but extremely promising; it has been invented by the swarm intelligence community
Books

